50 research outputs found
One Small Step for Generative AI, One Giant Leap for AGI: A Complete Survey on ChatGPT in AIGC Era
OpenAI has recently released GPT-4 (a.k.a. ChatGPT plus), which is
demonstrated to be one small step for generative AI (GAI), but one giant leap
for artificial general intelligence (AGI). Since its official release in
November 2022, ChatGPT has quickly attracted numerous users with extensive
media coverage. Such unprecedented attention has also motivated numerous
researchers to investigate ChatGPT from various aspects. According to Google
scholar, there are more than 500 articles with ChatGPT in their titles or
mentioning it in their abstracts. Considering this, a review is urgently
needed, and our work fills this gap. Overall, this work is the first to survey
ChatGPT with a comprehensive review of its underlying technology, applications,
and challenges. Moreover, we present an outlook on how ChatGPT might evolve to
realize general-purpose AIGC (a.k.a. AI-generated content), which will be a
significant milestone for the development of AGI.Comment: A Survey on ChatGPT and GPT-4, 29 pages. Feedback is appreciated
([email protected]
An Electromagnetic/Capacitive Composite Sensor for Testing of Thermal Barrier Coatings
Thermal barrier coatings (TBCs) can significantly reduce the operating temperature of the aeroengine turbine blade substrate, and their testing technology is very urgently demanded. Due to their complex multi-layer structure, it is hard to evaluate TBCs with a single function sensor. In this paper, an electromagnetic/capacitive composite sensor is proposed for the testing of thermal barrier coatings. The dielectric material is tested with planar capacitor, and the metallic material is tested with electromagnetic coils. Then, the comprehensive test and evaluation of thermal barrier coating system can be realized. The sensor is optimized by means of theoretical and simulation analysis, and the interaction between the planar capacitor and the electromagnetic coil is studied. The experimental system is built based on an impedance analyser and multiplex unit to evaluate the performance of the composite sensor. The transimpedances and capacitances are measured under different coating parameters, such as thickness and permittivity of top coating as well as bond layer conductivity. The experimental results agree with the simulation analysis, and the feasibility of the sensor is proved
Automatic neutral section passing control device based on image recognition for electric locomotives
A comparison between ultrasonic array beamforming and super resolution imaging algorithms for non-destructive evaluation
AbstractIn this paper the total focusing method, the so called gold standard in classical beamforming, is compared with the widely used time-reversal MUSIC super resolution technique in terms of its ability to resolve closely spaced scatterers in a solid. The algorithms are tested with simulated and experimental array data, each containing different noise levels. The performance of the algorithms is evaluated in terms of lateral resolution and sensitivity to noise. It is shown that for the weak noise situation (SNR>20dB), time-reversal MUSIC provides significantly enhanced lateral resolution when compared to the total focusing method, breaking the diffraction limit. However, for higher noise levels, the total focusing method is shown to be robust, whilst the performance of time-reversal MUSIC is degraded. The influence of multiple scattering on the imaging algorithms is also investigated and shown to be small