11,143 research outputs found

    Collaborative Spectrum Sensing from Sparse Observations Using Matrix Completion for Cognitive Radio Networks

    Full text link
    In cognitive radio, spectrum sensing is a key component to detect spectrum holes (i.e., channels not used by any primary users). Collaborative spectrum sensing among the cognitive radio nodes is expected to improve the ability of checking complete spectrum usage states. Unfortunately, due to power limitation and channel fading, available channel sensing information is far from being sufficient to tell the unoccupied channels directly. Aiming at breaking this bottleneck, we apply recent matrix completion techniques to greatly reduce the sensing information needed. We formulate the collaborative sensing problem as a matrix completion subproblem and a joint-sparsity reconstruction subproblem. Results of numerical simulations that validated the effectiveness and robustness of the proposed approach are presented. In particular, in noiseless cases, when number of primary user is small, exact detection was obtained with no more than 8% of the complete sensing information, whilst as number of primary user increases, to achieve a detection rate of 95.55%, the required information percentage was merely 16.8%

    Collaborative Spectrum Sensing from Sparse Observations in Cognitive Radio Networks

    Full text link
    Spectrum sensing, which aims at detecting spectrum holes, is the precondition for the implementation of cognitive radio (CR). Collaborative spectrum sensing among the cognitive radio nodes is expected to improve the ability of checking complete spectrum usage. Due to hardware limitations, each cognitive radio node can only sense a relatively narrow band of radio spectrum. Consequently, the available channel sensing information is far from being sufficient for precisely recognizing the wide range of unoccupied channels. Aiming at breaking this bottleneck, we propose to apply matrix completion and joint sparsity recovery to reduce sensing and transmitting requirements and improve sensing results. Specifically, equipped with a frequency selective filter, each cognitive radio node senses linear combinations of multiple channel information and reports them to the fusion center, where occupied channels are then decoded from the reports by using novel matrix completion and joint sparsity recovery algorithms. As a result, the number of reports sent from the CRs to the fusion center is significantly reduced. We propose two decoding approaches, one based on matrix completion and the other based on joint sparsity recovery, both of which allow exact recovery from incomplete reports. The numerical results validate the effectiveness and robustness of our approaches. In particular, in small-scale networks, the matrix completion approach achieves exact channel detection with a number of samples no more than 50% of the number of channels in the network, while joint sparsity recovery achieves similar performance in large-scale networks.Comment: 12 pages, 11 figure

    Behavior Extraction from Examples Using Federate MCMC-Based Particle Filtering

    Get PDF
    AbstractData-driven methods of simulating a crowd of virtual humans that exhibit behaviors imitating real human crowds play an important role in crowd simulation. In this paper, we propose a Bayesian framework for the extraction of real human's behaviors which exhibit interactions in their daily life using multiple fixed cameras. The described Markov chain Monte Carlo particle filter can effectively deals with interacting targets which are influenced by the proximity and behaviors of other targets. In this paper, we use a Markov random field motion prior combing with a federate filter algorithm which treats the observations discriminatorily to substantially improve the tracking of a fixed number of interacting targets. Simultaneously, we replace the traditional importance sampling step with MCMC sampling step to get over the vast computational requirements for large numbers of targets. i.e., we focus on the data fusion and the behavior recognition process. Finally, experimental results demonstrate that the proposed Bayesian framework deals efficiently and effectively with extractions of interacting behavior
    • …
    corecore