11,143 research outputs found
Collaborative Spectrum Sensing from Sparse Observations Using Matrix Completion for Cognitive Radio Networks
In cognitive radio, spectrum sensing is a key component to detect spectrum
holes (i.e., channels not used by any primary users). Collaborative spectrum
sensing among the cognitive radio nodes is expected to improve the ability of
checking complete spectrum usage states. Unfortunately, due to power limitation
and channel fading, available channel sensing information is far from being
sufficient to tell the unoccupied channels directly. Aiming at breaking this
bottleneck, we apply recent matrix completion techniques to greatly reduce the
sensing information needed. We formulate the collaborative sensing problem as a
matrix completion subproblem and a joint-sparsity reconstruction subproblem.
Results of numerical simulations that validated the effectiveness and
robustness of the proposed approach are presented. In particular, in noiseless
cases, when number of primary user is small, exact detection was obtained with
no more than 8% of the complete sensing information, whilst as number of
primary user increases, to achieve a detection rate of 95.55%, the required
information percentage was merely 16.8%
Collaborative Spectrum Sensing from Sparse Observations in Cognitive Radio Networks
Spectrum sensing, which aims at detecting spectrum holes, is the precondition
for the implementation of cognitive radio (CR). Collaborative spectrum sensing
among the cognitive radio nodes is expected to improve the ability of checking
complete spectrum usage. Due to hardware limitations, each cognitive radio node
can only sense a relatively narrow band of radio spectrum. Consequently, the
available channel sensing information is far from being sufficient for
precisely recognizing the wide range of unoccupied channels. Aiming at breaking
this bottleneck, we propose to apply matrix completion and joint sparsity
recovery to reduce sensing and transmitting requirements and improve sensing
results. Specifically, equipped with a frequency selective filter, each
cognitive radio node senses linear combinations of multiple channel information
and reports them to the fusion center, where occupied channels are then decoded
from the reports by using novel matrix completion and joint sparsity recovery
algorithms. As a result, the number of reports sent from the CRs to the fusion
center is significantly reduced. We propose two decoding approaches, one based
on matrix completion and the other based on joint sparsity recovery, both of
which allow exact recovery from incomplete reports. The numerical results
validate the effectiveness and robustness of our approaches. In particular, in
small-scale networks, the matrix completion approach achieves exact channel
detection with a number of samples no more than 50% of the number of channels
in the network, while joint sparsity recovery achieves similar performance in
large-scale networks.Comment: 12 pages, 11 figure
Behavior Extraction from Examples Using Federate MCMC-Based Particle Filtering
AbstractData-driven methods of simulating a crowd of virtual humans that exhibit behaviors imitating real human crowds play an important role in crowd simulation. In this paper, we propose a Bayesian framework for the extraction of real human's behaviors which exhibit interactions in their daily life using multiple fixed cameras. The described Markov chain Monte Carlo particle filter can effectively deals with interacting targets which are influenced by the proximity and behaviors of other targets. In this paper, we use a Markov random field motion prior combing with a federate filter algorithm which treats the observations discriminatorily to substantially improve the tracking of a fixed number of interacting targets. Simultaneously, we replace the traditional importance sampling step with MCMC sampling step to get over the vast computational requirements for large numbers of targets. i.e., we focus on the data fusion and the behavior recognition process. Finally, experimental results demonstrate that the proposed Bayesian framework deals efficiently and effectively with extractions of interacting behavior
- …