35,292 research outputs found

    Matter loops corrected modified gravity in Palatini formulation

    Full text link
    Recently, corrections to the standard Einstein-Hilbert action are proposed to explain the current cosmic acceleration in stead of introducing dark energy. In the Palatini formulation of those modified gravity models, there is an important observation due to Arkani-Hamed: matter loops will give rise to a correction to the modified gravity action proportional to the Ricci scalar of the metric. In the presence of such term, we show that the current forms of modified gravity models in Palatini formulation, specifically, the 1/R gravity and lnR\ln R gravity, will have phantoms. Then we study the possible instabilities due to the presence of phantom fields. We show that the strong instability in the metric formulation of 1/R gravity indicated by Dolgov and Kawasaki will not appear and the decay timescales for the phantom fields may be long enough for the theories to make sense as effective field theory . On the other hand, if we change the sign of the modification terms to eliminate the phantoms, some other inconsistencies will arise for the various versions of the modified gravity models. Finally, we comment on the universal property of the Palatini formulation of the matter loops corrected modified gravity models and its implications.Comment: 11 pages, 1 figures, References adde

    Topological Protection of Majorana Qubits

    Full text link
    We study the stability of the topological quantum computation proposals involving Majorana fermions against thermal fluctuations. We use a minimal realistic model of a spinless px+ipy superconductor and consider effect of excited midgap states localized in the vortex core as well as of transitions above the bulk superconducting gap on the quasiparticle braiding, interferometry-based qubit read-out schemes, and quantum coherence of the topological qubits. We find that thermal occupation of the midgap states does not affect adiabatic braiding operations but leads to a reduction in the visibility of the interferometry measurements. We also consider quantum decoherence of topological qubits at finite temperatures and calculate their decay rate which is associated with the change of the fermion parity and, as such, is exponentially suppressed at temperatures well below the bulk excitation gap. Our conclusion is that the Majorana-based topological quantum computing schemes are indeed protected by the virtue of the quantum non-locality of the stored information and the presence of the bulk superconducting gap.Comment: 8 pages, 1 figur

    Relativistic description of nuclear matrix elements in neutrinoless double-β\beta decay

    Full text link
    Neutrinoless double-β\beta (0νββ0\nu\beta\beta) decay is related to many fundamental concepts in nuclear and particle physics beyond the standard model. Currently there are many experiments searching for this weak process. An accurate knowledge of the nuclear matrix element for the 0νββ0\nu\beta\beta decay is essential for determining the effective neutrino mass once this process is eventually measured. We report the first full relativistic description of the 0νββ0\nu\beta\beta decay matrix element based on a state-of-the-art nuclear structure model. We adopt the full relativistic transition operators which are derived with the charge-changing nucleonic currents composed of the vector coupling, axial-vector coupling, pseudoscalar coupling, and weak-magnetism coupling terms. The wave functions for the initial and final nuclei are determined by the multireference covariant density functional theory (MR-CDFT) based on the point-coupling functional PC-PK1. The low-energy spectra and electric quadrupole transitions in 150{}^{150}Nd and its daughter nucleus 150{}^{150}Sm are well reproduced by the MR-CDFT calculations. The 0νββ0\nu\beta\beta decay matrix elements for both the 01+01+0_1^+\rightarrow 0_1^+ and 01+02+0_1^+\rightarrow 0_2^+ decays of 150{}^{150}Nd are evaluated. The effects of particle number projection, static and dynamic deformations, and the full relativistic structure of the transition operators on the matrix elements are studied in detail. The resulting 0νββ0\nu\beta\beta decay matrix element for the 01+01+0_1^+\rightarrow 0_1^+ transition is 5.605.60, which gives the most optimistic prediction for the next generation of experiments searching for the 0νββ0\nu\beta\beta decay in 150{}^{150}Nd.Comment: 17 pages, 9 figures; table adde

    The structure of superheavy elements newly discovered in the reaction of 86^{86}Kr with 208^{208}Pb

    Get PDF
    The structure of superheavy elements newly discovered in the 208^{208}Pb(86^{86}Kr,n) reaction at Berkeley is systematically studied in the Relativistic Mean Field (RMF) approach. It is shown that various usually employed RMF forces, which give fair description of normal stable nuclei, give quite different predictions for superheavy elements. Among the effective forces we tested, TM1 is found to be the good candidate to describe superheavy elements. The binding energies of the 293^{293}118 nucleus and its α\alpha-decay daughter nuclei obtained using TM1 agree with those of FRDM within 2 MeV. Similar conclusion that TM1 is the good interaction is also drawn from the calculated binding energies for Pb isotopes with the Relativistic Continuum Hartree Bogoliubov (RCHB) theory. Using the pairing gaps obtained from RCHB, RMF calculations with pairing and deformation are carried out for the structure of superheavy elements. The binding energy, shape, single particle levels, and the Q values of the α\alpha-decay QαQ_{\alpha} are discussed, and it is shown that both pairing correlation and deformation are essential to properly understand the structure of superheavy elements. A good agreement is obtained with experimental data on QαQ_{\alpha}. %Especially, the atomic number %dependence of QαQ_{\alpha} %seems to match with the experimental observationComment: 19 pages, 5 figure

    Birkhoff's Theorem in f(T) Gravity up to the Perturbative Order

    Full text link
    f(T) gravity, a generally modified teleparallel gravity, has become very popular in recent times as it is able to reproduce the unification of inflation and late-time acceleration without the need of a dark energy component or an inflation field. In this present work, we investigate specifically the range of validity of Birkhoff's theorem with the general tetrad field via perturbative approach. At zero order, Birkhoff's theorem is valid and the solution is the well known Schwarzschild-(A)dS metric. Then considering the special case of the diagonal tetrad field, we present a new spherically symmetric solution in the frame of f(T) gravity up to the perturbative order. The results with the diagonal tetrad field satisfy the physical equivalence between the Jordan and the so-called Einstein frames, which are realized via conformal transformation, at least up to the first perturbative order.Comment: 8 pages, no figure. Final version, accepted for publication in EPJ

    Extended Birkhoff's Theorem in the f(T) Gravity

    Full text link
    The f(T) theory, a generally modified teleparallel gravity, has been proposed as an alternative gravity model to account for the dark energy phenomena. Following our previous work [Xin-he Meng and Ying-bin Wang, EPJC(2011), arXiv:1107.0629v1], we prove that the Birkhoff's theorem holds in a more general context, specifically with the off diagonal tetrad case, in this communication letter. Then, we discuss respectively the results of the external vacuum and internal gravitational field in the f(T) gravity framework, as well as the extended meaning of this theorem. We also investigate the validity of the Birkhoff's theorem in the frame of f(T) gravity via conformal transformation by regarding the Brans-Dicke-like scalar as effective matter, and study the equivalence between both Einstein frame and Jordan frame.Comment: 7 pages, 1 figure, submitted to EPJ-C. arXiv admin note: substantial text overlap with arXiv:1107.062

    A unified approach to linking experimental, statistical and computational analysis of spike train data

    Get PDF
    A fundamental issue in neuroscience is how to identify the multiple biophysical mechanisms through which neurons generate observed patterns of spiking activity. In previous work, we proposed a method for linking observed patterns of spiking activity to specific biophysical mechanisms based on a state space modeling framework and a sequential Monte Carlo, or particle filter, estimation algorithm. We have shown, in simulation, that this approach is able to identify a space of simple biophysical models that were consistent with observed spiking data (and included the model that generated the data), but have yet to demonstrate the application of the method to identify realistic currents from real spike train data. Here, we apply the particle filter to spiking data recorded from rat layer V cortical neurons, and correctly identify the dynamics of an slow, intrinsic current. The underlying intrinsic current is successfully identified in four distinct neurons, even though the cells exhibit two distinct classes of spiking activity: regular spiking and bursting. This approach – linking statistical, computational, and experimental neuroscience – provides an effective technique to constrain detailed biophysical models to specific mechanisms consistent with observed spike train data.Published versio

    Birkhoff's theorem in the f(T) gravity

    Full text link
    Generalized from the so-called teleparallel gravity which is exactly equivalent to general relativity, the f(T)f(T) gravity has been proposed as an alternative gravity model to account for the dark energy phenomena. In this letter we prove that the external vacuum gravitational field for a spherically symmetric distribution of source matter in the f(T)f(T) gravity framework must be static and the conclusion is independent of the radial distribution and spherically symmetric motion of the source matter that is, whether it is in motion or static. As a consequence, the Birkhoff's theorem is valid in the general f(T)f(T) theory. We also discuss its application in the de Sitter space-time evolution phase as preferred to by the nowadays dark energy observations.Comment: 5p
    corecore