8,658 research outputs found
LATTE: Application Oriented Social Network Embedding
In recent years, many research works propose to embed the network structured
data into a low-dimensional feature space, where each node is represented as a
feature vector. However, due to the detachment of embedding process with
external tasks, the learned embedding results by most existing embedding models
can be ineffective for application tasks with specific objectives, e.g.,
community detection or information diffusion. In this paper, we propose study
the application oriented heterogeneous social network embedding problem.
Significantly different from the existing works, besides the network structure
preservation, the problem should also incorporate the objectives of external
applications in the objective function. To resolve the problem, in this paper,
we propose a novel network embedding framework, namely the "appLicAtion
orienTed neTwork Embedding" (Latte) model. In Latte, the heterogeneous network
structure can be applied to compute the node "diffusive proximity" scores,
which capture both local and global network structures. Based on these computed
scores, Latte learns the network representation feature vectors by extending
the autoencoder model model to the heterogeneous network scenario, which can
also effectively unite the objectives of network embedding and external
application tasks. Extensive experiments have been done on real-world
heterogeneous social network datasets, and the experimental results have
demonstrated the outstanding performance of Latte in learning the
representation vectors for specific application tasks.Comment: 11 Pages, 12 Figures, 1 Tabl
A Unified Coded Deep Neural Network Training Strategy Based on Generalized PolyDot Codes for Matrix Multiplication
This paper has two contributions. First, we propose a novel coded matrix
multiplication technique called Generalized PolyDot codes that advances on
existing methods for coded matrix multiplication under storage and
communication constraints. This technique uses "garbage alignment," i.e.,
aligning computations in coded computing that are not a part of the desired
output. Generalized PolyDot codes bridge between Polynomial codes and MatDot
codes, trading off between recovery threshold and communication costs. Second,
we demonstrate that Generalized PolyDot can be used for training large Deep
Neural Networks (DNNs) on unreliable nodes prone to soft-errors. This requires
us to address three additional challenges: (i) prohibitively large overhead of
coding the weight matrices in each layer of the DNN at each iteration; (ii)
nonlinear operations during training, which are incompatible with linear
coding; and (iii) not assuming presence of an error-free master node, requiring
us to architect a fully decentralized implementation without any "single point
of failure." We allow all primary DNN training steps, namely, matrix
multiplication, nonlinear activation, Hadamard product, and update steps as
well as the encoding/decoding to be error-prone. We consider the case of
mini-batch size , as well as , leveraging coded matrix-vector
products, and matrix-matrix products respectively. The problem of DNN training
under soft-errors also motivates an interesting, probabilistic error model
under which a real number MDS code is shown to correct errors
with probability as compared to for the
more conventional, adversarial error model. We also demonstrate that our
proposed strategy can provide unbounded gains in error tolerance over a
competing replication strategy and a preliminary MDS-code-based strategy for
both these error models.Comment: Presented in part at the IEEE International Symposium on Information
Theory 2018 (Submission Date: Jan 12 2018); Currently under review at the
IEEE Transactions on Information Theor
Graphics processing unit accelerating compressed sensing photoacoustic computed tomography with total variation
Photoacoustic computed tomography with compressed sensing (CS-PACT) is a commonly used imaging strategy for sparse-sampling PACT. However, it is very time-consuming because of the iterative process involved in the image reconstruction. In this paper, we present a graphics processing unit (GPU)-based parallel computation framework for total-variation-based CS-PACT and adapted into a custom-made PACT system. Specifically, five compute-intensive operators are extracted from the iteration algorithm and are redesigned for parallel performance on a GPU. We achieved an image reconstruction speed 24β31 times faster than the CPU performance. We performed in vivo experiments on human hands to verify the feasibility of our developed method
- β¦