602 research outputs found

    Investigation on Aluminum-Based Amorphous Metallic Glass as New Anode Material in Lithium Ion Batteries

    Get PDF
    Aluminum based amorphous metallic glass powders were produced and tested as the anode materials for the lithium ion rechargeable batteries. Ground Al₈₀Ni&#x2081₀La&#x2081₀ was found to have a low first cycle capacity of about 100 Ah/Kg. The considerable amount of intermetallic formed in the amorphous glass makes the aluminum inactive towards the lithium. The ball milled Al₈₈Ni₉Y₃ powders contain pure aluminum crystalline particles in the amorphous matrix and have first cycle capacity of about 500 Ah/Kg. Nevertheless, polarization was caused by oxidation introduced by the ball-milling process. The electrochemical performances of these amorphous metallic glasses need to be further investigated. Their full lithium insertion capacities cannot be confirmed until the compositions and particle size inside the metallic glass anodes, the conformation of the electrodes and the mechanical milling processes are optimized.Singapore-MIT Alliance (SMA

    Amorphous Metallic Glass as New High Power and Energy Density Anodes For Lithium Ion Rechargeable Batteries

    Get PDF
    We have investigated the use of aluminum based amorphous metallic glass as the anode in lithium ion rechargeable batteries. Amorphous metallic glasses have no long-range ordered microstructure; the atoms are less closely packed compared to the crystalline alloys of the same compositions; they usually have higher ionic conductivity than crystalline materials, which make rapid lithium diffusion possible. Many metallic systems have higher theoretical capacity for lithium than graphite/carbon; in addition irreversible capacity loss can be avoided in metallic systems. With careful processing, we are able to obtain nano-crystalline phases dispersed in the amorphous metallic glass matrix. These crystalline regions may form the active centers with which lithium reacts. The surrounding matrix can respond very well to the volume changes as these nano-size regions take up lithium. A comparison study of various kinds of anode materials for lithium rechargeable batteries is carried out.Singapore-MIT Alliance (SMA

    Engineering three-dimensionally electrodeposited Si-on-Ni inverse opal structure for high volumetric capacity Li-ion microbattery anode.

    Get PDF
    Aiming at improving the volumetric capacity of nanostructured Li-ion battery anode, an electrodeposited Si-on-Ni inverse opal structure has been proposed in the present work. This type of electrode provides three-dimensional bi-continuous pathways for ion/electron transport and high surface area-to-volume ratios, and thus exhibits lower interfacial resistance, but higher effective Li ions diffusion coefficients, when compared to the Si-on-Ni nanocable array electrode of the same active material mass. As a result, improved volumetric capacities and rate capabilities have been demonstrated in the Si-on-Ni inverse opal anode. We also show that optimization of the volumetric capacities and the rate performance of the inverse opal electrode can be realized by manipulating the pore size of the Ni scaffold and the thickness of the Si deposit

    Non-destructive characterization techniques for battery performance and lifecycle assessment

    Full text link
    As global energy demands escalate, and the use of non-renewable resources become untenable, renewable resources and electric vehicles require far better batteries to stabilize the new energy landscape. To maximize battery performance and lifetime, understanding and monitoring the fundamental mechanisms that govern their operation throughout their life cycle is crucial. Unfortunately, from the moment batteries are sealed until their end-of-life, they remain a black box, and our current knowledge of a commercial battery s health status is limited to current (I), voltage (V), temperature (T), and impedance (R) measurements, at the cell or even module level during use. Electrochemical models work best when the battery is new, and as state reckoning drifts leading to an over-reliance on insufficient data to establish conservative safety margins resulting in the systematic under-utilization of cells and batteries. While the field of operando characterization is not new, the emergence of techniques capable of tracking commercial battery properties under realistic conditions has unlocked a trove of chemical, thermal, and mechanical data that has the potential to revolutionize the development and utilization strategies of both new and used lithium-ion devices. In this review, we examine the latest advances in non-destructive operando characterization techniques, including electrical sensors, optical fibers, acoustic transducers, X-ray-based imaging and thermal imaging (IR camera or calorimetry), and their potential to improve our comprehension of degradation mechanisms, reduce time and cost, and enhance battery performance throughout its life cycle
    • …
    corecore