The secondary control in direct current microgrids (MGs) is used to restore
the voltage deviations caused by the primary droop control, where the latter is
implemented locally in each distributed generator and reacts to load
variations. Numerous recent works propose to implement the secondary control in
a distributed fashion, relying on a communication system to achieve consensus
among MG units. This paper shows that, if the system is not designed to cope
with adversary communication impairments, then a malicious attacker can apply a
simple jamming of a few units of the MG and thus compromise the secondary MG
control. Compared to other denial-of-service attacks that are oriented against
the tertiary control, such as economic dispatch, the attack on the secondary
control presented here can be more severe, as it disrupts the basic
functionality of the MG