14,860 research outputs found

    Quark matter equation of state and stellar properties

    Full text link
    In this paper we study strange matter by investigating the stability window within the QMDD model at zero temperature and check that it can explain the very massive pulsar recently detected. We compare our results with the ones obtained from the MIT bag model and see that the QMDD model can explain larger masses, due to the stiffening of the equation of state

    The molecular H2 emission and the stellar kinematics in the nuclear region of the Sombrero galaxy

    Full text link
    We analyze the molecular H2_2 emission and the stellar kinematics in a data cube of the nuclear region of M104, the Sombrero galaxy, obtained with NIFS on the Gemini-north telescope. After a careful subtraction of the stellar continuum, the only emission line we detected in the data cube was H2λ21218_2 \lambda 21218. An analysis of this emission revealed the existence of a rotating molecular torus/disk, aproximately co-planar with a dusty structure detected by us in a previous work. We interpret these two structures as being associated with the same obscuring torus/disk. The kinematic maps provided by the Penalized Pixel Fitting method revealed that the stellar kinematics in the nuclear region of M104 appears to be the result of the superposition of a "cold" rotating disk and a "hot" bulge. Using a model of a thin eccentric disk, we reproduced the main properties of the maps of the stellar radial velocity and of the stellar velocity dispersion, specially within a distance of 0.2" from the kinematic axis (in regions at larger distances, the limitations of a model of a thin rotating disk become more visible). The general behavior of the h3h_3 map, which is significantly noisier than the other maps, was also reproduced by our model (although the discrepancies, in this case, are considerably higher). With our model, we obtained a mass of (9.0 +/- 2.0) x 10^8 Mo for the supermassive black hole of M104, which is compatible, at 1σ1\sigma or 2σ2\sigma levels, with the values obtained by previous studies.Comment: 11 pages, 5 figures, 1 table, published online in Ap

    Stable finite energy global vortices and asymptotic freedom

    Full text link
    This work deals with global vortices in the three-dimensional spacetime. We study the case of a simple model with U(1)U(1) symmetry and find a way to describe stable, finite energy global vortices. The price we pay to stabilize the solution is the presence of scale invariance, but we have found a way to trade it with an electric charge in a medium with generalized permittivity, which is further used to capture the basic feature of asymptotic freedom.Comment: 6 pages, 3 figures. To appear in EP

    Highly interactive kink solutions

    Full text link
    In this work we present a new class of real scalar field models admitting strongly interactive kink solutions. Instead of the usual exponential asymptotic behavior these topological solutions exhibit a power-law one. We investigate the interaction force between a pair of kink/anti-kink solutions both analytically and numerically, by integrating the time dependent field equations of the model. Furthermore, working within the first-order framework, we analyze the linear stability of these solutions. The stability analysis leads to Sch\"odinger-like equations with potentials which, despite admitting no bound states, lead to strong resonance peaks. We argue that these properties are important for some possible physical applications.Comment: 9 pages, 8 figure

    Cuscuton kinks and branes

    Full text link
    In this paper, we study a peculiar model for the scalar field. We add the cuscuton term in a standard model and investigate how this inclusion modifies the usual behavior of kinks. We find the first order equations and calculate the energy density and the total energy of the system. Also, we investigate the linear stability of the model, which is governed by a Sturm-Liouville eigenvalue equation that can be transformed in an equation of the Shcr\"odinger type. The model is also investigated in the braneworld scenario, where a first order formalism is also obtained and the linear stability is investigated.Comment: 21 pages, 9 figures; content added; to appear in NP

    Generalized scalar field models with the same energy density and linear stability

    Full text link
    We study how the properties of a Lagrangian density for a single real scalar field in flat spacetime change with inclusion of an overall factor depending only on the field. The focus of the paper is to obtain analytical results. So, we show that even though it is possible to perform a field redefinition to get an equivalent canonical model, it is not always feasible to write the canonical model in terms of elementary functions. Also, we investigate the behavior of the energy density and the linear stability of the solutions. Finally, we show that one can find a class of models that present the same energy density and the same stability potential.Comment: 6 pages, 4 figure

    Exact solutions, energy and charge of stable Q-balls

    Get PDF
    In this work we deal with nontopological solutions of the Q-ball type in two spacetime dimensions. We study models of current interest, described by a Higgs-like and other, similar potentials which unveil the presence of exact solutions. We use the analytic results to investigate how to control the energy and charge to make the Q-balls stable.Comment: 11 pages, 18 figures; v2, title changed, reference adde

    Twinlike Models for Self-Dual Maxwell-Higgs Theories

    Full text link
    In this work we present a theoretical framework that allows for the existence of coherent twinlike models in the context of self-dual Maxwell-Higgs theories. We verify the consistence of this framework by using it to develop some twinlike self-dual Maxwell-Higgs models. We use a combination of theoretical and numerical techniques to show that these models exhibit the very same topological BPS structures, including their field configurations and total energy. The study shows that it is possible to develop a completely consistent prescription, which extends the idea of twinlike models to the case of vortices in Maxwell-Higgs theories.Comment: 7 pages, 3 figures; version to appear in PR
    • …
    corecore