3,671 research outputs found

    Stability windows for proto-quark stars

    Full text link
    We investigate the existence of possible stable strange matter and related stability windows at finite temperature for different models that are generally applied to describe quark stars, namely, the quark-mass density dependent model, the MIT bag model and the Nambu-Jona-Lasinio model. We emphasize that, although the limits for stable strange matter depend on a comparison with the ground state of 56Fe, which is a zero temperature state, the quantity that has to be used in the search for strange matter in proto-quark stars is the free energy and we analyze stability windows up to temperatures of the order of 40 MeV. The effects of strong magnetic fields on stability windows are computed and the resulting mass-radius relations for different stages of the proto-quark star are analyzed.Comment: Published versio

    Gravitational Wave Signatures of Highly Magnetized Neutron Stars

    Full text link
    Motivated by the recent gravitational wave detection by the LIGO-VIRGO observatories, we study the Love number and dimensionless tidal polarizability of highly magnetized stars. We also investigate the fundamental quasi-normal mode of neutron stars subject to high magnetic fields. To perform our calculations we use the chaotic field approximation and consider both nucleonic and hyperonic stars. As far as the fundamental mode is concerned, we conclude that the role played by the constitution of the stars is far more relevant than the intensity of the magnetic field and if massive stars are considered, the ones constituted by nucleons only present frequencies somewhat lower than the ones with hyperonic cores, a feature that can be used to point out the real internal structure of neutron stars. Moreover, our studies clearly indicate that strong magnetic fields play a crucial role in the deformability of low mass neutron stars, with possible consequences on the interpretation of the detected gravitational waves signatures.Comment: 24 pages, 4 figures, 6 table

    Von-Neumann's and related scaling laws in Rock-Paper-Scissors type models

    Full text link
    We introduce a family of Rock-Paper-Scissors type models with ZNZ_N symmetry (NN is the number of species) and we show that it has a very rich structure with many completely different phases. We study realizations which lead to the formation of domains, where individuals of one or more species coexist, separated by interfaces whose (average) dynamics is curvature driven. This type of behavior, which might be relevant for the development of biological complexity, leads to an interface network evolution and pattern formation similar to the ones of several other nonlinear systems in condensed matter and cosmology.Comment: 5 pages, 6 figures, published versio

    Impurity segregation in graphene nanoribbons

    Full text link
    The electronic properties of low-dimensional materials can be engineered by doping, but in the case of graphene nanoribbons (GNR) the proximity of two symmetry-breaking edges introduces an additional dependence on the location of an impurity across the width of the ribbon. This introduces energetically favorable locations for impurities, leading to a degree of spatial segregation in the impurity concentration. We develop a simple model to calculate the change in energy of a GNR system with an arbitrary impurity as that impurity is moved across the ribbon and validate its findings by comparison with ab initio calculations. Although our results agree with previous works predicting the dominance of edge disorder in GNR, we argue that the distribution of adsorbed impurities across a ribbon may be controllable by external factors, namely an applied electric field. We propose that this control over impurity segregation may allow manipulation and fine-tuning of the magnetic and transport properties of GNRs.Comment: 5 pages, 4 figures, submitte
    • …
    corecore