196 research outputs found
DEFINIÇÃO DE SUSCETIBILIDADE E PERIGO DE INUNDAÇÃO NA ÁREA URBANA DE ROSÁRIO DO SUL-RS
A ocupação junto a rios é uma característica observada em várias cidades. Porém o mesmo rio que facilita a vida do homem, causa destruição. Este trabalho identifica as áreas suscetíveis e de perigo em Rosário do Sul-RS. A metodologia compreende: revisão bibliográfica; análise espacial; mapeamento das áreas suscetíveis e com perigo de inundação. Foram identificados os locais suscetíveis e com esses resultados indicou-se o perigo. As informações obtidas são ferramentas para o planejamento
Percolation and epidemics in a two-dimensional small world
Percolation on two-dimensional small-world networks has been proposed as a
model for the spread of plant diseases. In this paper we give an analytic
solution of this model using a combination of generating function methods and
high-order series expansion. Our solution gives accurate predictions for
quantities such as the position of the percolation threshold and the typical
size of disease outbreaks as a function of the density of "shortcuts" in the
small-world network. Our results agree with scaling hypotheses and numerical
simulations for the same model.Comment: 7 pages, 3 figures, 2 table
Shortest paths on systems with power-law distributed long-range connections
We discuss shortest-path lengths on periodic rings of size L
supplemented with an average of pL randomly located long-range links whose
lengths are distributed according to P_l \sim l^{-\xpn}. Using rescaling
arguments and numerical simulation on systems of up to sites, we show
that a characteristic length exists such that for
. For small p we find
that the shortest-path length satisfies the scaling relation
\ell(r,\xpn,p)/\xi = f(\xpn,r/\xi). Three regions with different asymptotic
behaviors are found, respectively: a) \xpn>2 where , b)
1<\xpn<2 where 0<\theta_s(\xpn)<1/2 and, c) \xpn<1 where
behaves logarithmically, i.e. . The characteristic length is
of the form with \nu=1/(2-\xpn) in region b), but depends
on L as well in region c). A directed model of shortest-paths is solved and
compared with numerical results.Comment: 10 pages, 10 figures, revtex4. Submitted to PR
Efeito da Gliricidia sepium sobre nutrientes do solo, microclima e produtividade do milho em sistema agroflorestal no Agreste Paraibano.
Gliricidia sepium é uma leguminosa arbórea que tem sido utilizada em sistemas em aléias no semi-árido nordestino por apresentar bom desenvolvimento em condições de estresse hídrico. Entretanto, há pouca informação disponível sobre o efeito da introdução dessa espécie nos agroecossistemas da região. No presente estudo, objetivou-se avaliar a influência da distância de plantas de Gliricidia sepium sobre características da cultura do milho e do solo e microclima no Agreste Paraibano. O estudo foi realizado no município de Esperança (PB), em área de 0,5 ha, onde, em 1996, foram plantadas fileiras de G. sepium espaçadas 6 m entre si e com 1 m entre as árvores. Nesta área, em 2002, foram delimitadas quatro parcelas de 6 x 8 m e, em cada parcela, foi estabelecido um transeto perpendicular às fileiras de árvores com três posições de amostragem: (1) nas fileiras de árvores (0 m); (2) a 1 m das fileiras de árvores, e (3) a 3 m de distância das fileiras de árvores. O delineamento experimental utilizado foi em blocos casualizados com quatro repetições. A massa seca de folhedo caído embaixo da fileira de árvores foi de 1.390 kg ha-1 e diminuiu, gradativamente, para 270 kg ha-1 a 3 m de distância das árvores. As concentrações de P, K e matéria orgânica leve (MOL) embaixo das árvores foram maiores do que a 1 e 3 m de distância das fileiras. As médias mensais das temperaturas mínimas do ar e do solo embaixo e a 3 m das árvores foram similares. Entretanto, as médias mensais das temperaturas máximas do solo e do ar foram de 6 e 2 °C mais altas a 3 m das árvores, respectivamente, ao longo do período de estudo. A umidade do solo foi significativamente menor embaixo das árvores do que a 1 e 3 m de distância. O milho produziu mais grãos e palha e acumulou mais nutrientes nas posições mais próximas das fileiras de G. sepium
Small world effects in evolution
For asexual organisms point mutations correspond to local displacements in
the genotypic space, while other genotypic rearrangements represent long-range
jumps. We investigate the spreading properties of an initially homogeneous
population in a flat fitness landscape, and the equilibrium properties on a
smooth fitness landscape. We show that a small-world effect is present: even a
small fraction of quenched long-range jumps makes the results indistinguishable
from those obtained by assuming all mutations equiprobable. Moreover, we find
that the equilibrium distribution is a Boltzmann one, in which the fitness
plays the role of an energy, and mutations that of a temperature.Comment: 13 pages and 5 figures. New revised versio
XY model in small-world networks
The phase transition in the XY model on one-dimensional small-world networks
is investigated by means of Monte-Carlo simulations. It is found that
long-range order is present at finite temperatures, even for very small values
of the rewiring probability, suggesting a finite-temperature transition for any
nonzero rewiring probability. Nature of the phase transition is discussed in
comparison with the globally-coupled XY model.Comment: 5 pages, accepted in PR
Self-avoiding walks and connective constants in small-world networks
Long-distance characteristics of small-world networks have been studied by
means of self-avoiding walks (SAW's). We consider networks generated by
rewiring links in one- and two-dimensional regular lattices. The number of
SAW's was obtained from numerical simulations as a function of the number
of steps on the considered networks. The so-called connective constant,
, which characterizes the long-distance
behavior of the walks, increases continuously with disorder strength (or
rewiring probability, ). For small , one has a linear relation , and being constants dependent on the underlying
lattice. Close to one finds the behavior expected for random graphs. An
analytical approach is given to account for the results derived from numerical
simulations. Both methods yield results agreeing with each other for small ,
and differ for close to 1, because of the different connectivity
distributions resulting in both cases.Comment: 7 pages, 5 figure
Fast Bounds on the Distribution of Smooth Numbers
In this paper we present improvements to Bernstein’s algorithm, which finds rigorous upper and lower bounds for (x, y)
Recommended from our members
High Involvement Management, High Performance Work Systems and Well-being
Studies on the impact of high-performance work systems on employees' well-being are emerging but the underlying theory remains weak. This paper attempts to develop theory of the effects on well-being of four dimensions of high-performance work systems: enriched jobs, high involvement management, employee voice, and motivational supports. Hypothesized associations are tested using multilevel models and data from Britain's Workplace Employment Relations Survey of 2004 (WERS2004). Results show that enriched jobs are positively associated with both measures of well-being: job satisfaction and anxiety–contentment. Voice is positively associated with job satisfaction, and motivational supports with neither measure. The results for high involvement management are not as predicted because it increases anxiety and is independent of job satisfaction
- …