18 research outputs found
Synthesis And Characterization Of Nio And Nife2 O4 Nanoparticles Obtained By A Sucrose-based Route
Crystalline oxide powders were synthesized in nanoscale dimensions by a simple and novel chemical route, which is based on the use of sucrose as a chelating agent. The starting solutions were evaporated at 60{ring operator} C and the resulting gel was heated up to 300, 600 or 750{ring operator} C. The process was able to produce nickel oxide and nickel ferrite, characterized by structural and microscopic techniques. The average size of the particle was estimated by both Scherrer's equation and electron microscopy, and the results indicated that particles with a high crystallinity and a mean size in the range of 11-36 nm were obtained. This synthesis route was able to produce NiFe2 O4 and NiO nanoparticles at temperatures as low as 300 and 350{ring operator} C, respectively. © 2007 Elsevier Ltd. All rights reserved.684594599Obi, S., Gale, M.T., Gimkiewicz, C., Westenhofer, S., Replicated optical MEMS in sol-gel materials (2004) IEEE J. Sel. Top. Quantum Electron., 10, pp. 440-444Ribeiro, M.A., Costa, A.C.F.M., Lira, H.L., Oliveira, J.B.L., Kiminami, R.H.G.A., Gama, L., Preparation and characterization of NiAl2 O4 powder by the Pechini and combustion methods (2005) Adv. Powder Technol. IV Mater. Sci. Forum, 498-499, pp. 722-727Hong, Y.S., Ho, C.M., Hsu, H.Y., Liu, C.T., Synthesis of nanocrystalline Ba (MnTi)x Fe12 - 2 x O19 powders by the sol-gel combustion method in citrate acid-metal nitrates system (x = 0, 0.5, 1.0, 1.5, 2.0) (2004) J. Magn. Magn. Mater., 279, pp. 401-410Nelis, D., Van Werde, K., Mondelaers, D., Vanhoyland, G., Van Den Rul, H., Van Bael, M.K., Mullens, J., Van Poucke, L.C., Aqueous solution-gel synthesis of strontium bismuth niobate (SrBi2 Nb2 O9) (2003) J. Sol-Gel Sci. Technol., 26, pp. 1125-1129Feng, W., Mu-sen, L., Yu-peng, L., Yong-xin, Q., A simple sol-gel technique for preparing hydroxyapatite nanopowders (2005) Mater. Lett., 59, pp. 916-919Sun, L., Favreau-Perreault, M., Brisard, G., Synthesis and electrochemical characterization of pure and composite cathode materials for solid oxide fuel cells (2004) J. New Mater. Electrochem. Syst., 7, pp. 247-255Van Werde, K., Vanhoyland, G., Nelis, D., Mondelaers, D., Van Bael, M.K., Mullens, J., Van Poucke, L.C., Phase formation of ferroelectric perovskite 0.75Pb(Zn-1/3,Nb-2/3) O-3-0.25 BaTiO3 prepared by aqueous solution-gel chemistry (2001) J. Mater. Chem., 11, pp. 1192-1197Kakihana, M., Okubo, T., Arima, M., Uchiyama, O., Yashima, M., Yoshimura, M., Nakamura, Y., Polymerized complex synthesis of perovskite lead titanate at reduced temperatures: possible formation of heterometallic (Pb,Ti)-citric acid complex (1997) Chem. Mater., 9, pp. 451-456Cho, W.S., Hamada, E., Synthesis of ultrafine BaTiO3 particles from polymeric precursor: their structure and surface property (1998) J. Alloys Compd., 266, pp. 118-122Narendar, Y., Messing, G.L., Mechanisms of phase separation in gel-based synthesis of multicomponent metal oxides (1997) Catal. Today, 35, pp. 247-268Vaqueiro, P., López-Quintela, M.A., Influence of complexing agents and pH on Yttrium-iron garnet synthesized by the sol-gel method (1997) Chem. Mater., 9, pp. 2836-2841Hüsing, N., Schubert, U., Aerogels airy materials: chemistry, structure, and properties (1998) Angew. Chem. Int. Ed., 37, pp. 23-45Yashima, M., Kakihana, M., Ishii, K., Ikuma, Y., Yoshimura, M., Synthesis of metastable tetragonal (t′) zirconia-calcia solid solution by pyrolysis of organic precursors and coprecipitation route (1996) J. Mater. Res., 11, pp. 1410-1420Kim, D.-W., Oh, S.-G., Agglomeration behavior of chromia nanoparticles prepared by amorphous complex method using chelating effect of citric acid (2005) Mater. Lett., 59, pp. 976-980Popa, M., Kakihana, M., Synthesis and thermoanalytical investigation of an amorphous praseodymium citrate (2001) J. Therm. Anal. Calorimetry, 65, pp. 281-293Duque, J.G.S., Macedo, M.A., Moreno, N.O., An alternative method to prepare CoFe2 O4 thin films (2000) Phys. Status Solidi B, 220, pp. 413-415T Meneses, C., Macedo, M.A., Vicentin, F.C., Lix Mn2 O4 thin films characterization by X-ray, electrical conductivity and XANES (2003) Microelectron. J., 34, pp. 561-563Macedo, M.A., Silva, M.N.B., Cestari, A.R., Vieira, E.F.S., Sasaki, J.M., Goes, J.C., Aguiar, J.A., Chitosan-based ferrimagnetic membrane (2004) Phys. B Condens. Matter, 354, pp. 171-173Camargo, E.R., Popa, M., Kakihana, M., Sodium niobate (NaNbO3) powders synthesized by a wet-chemical method using a water-soluble malic acid complex (2002) Chem. Mater., 14, pp. 2365-2368Gadjov, H., Gorova, M., Kotzeva, V., Avdeev, G., Uzunova, S., Kovacheva, D., LiMn2 O4 prepared by different methods at identical thermal treatment conditions: structural, morphological and electrochemical characteristics (2004) J. Power Sources, 134, pp. 110-117Flaschka, H.A., (1967) EDTA Titrations: An Introduction to Theory and Practice, , Pergamon, OxfordJeffery, G.H., Bassett, J., Mendham, J., Denney, R.C., (1989) Vogel's Textbook of Quantitative Chemical Analysis. fifth ed., , Wiley, New YorkRietveld, H.M., Line profiles of neutron powder-diffraction peaks for structure refinement (1967) Acta Crystallogr., 22, pp. 151-152Young, R.A., Wiles, D.B., Profile shape functions in Rietveld refinements (1982) J. Appl. Crystallogr., 15, pp. 430-438McCusker, L.B., Von Dreele, R.B., Cox, D.E., Loüer, D., Scardi, P., Rietveld refinement guidelines (1999) J. Appl. Crystallogr., 32, pp. 36-50Cullity, B.D., Stock, S.R., (2001) Elements of X-Ray Diffraction. third ed., , Prentice-Hall, New JerseyCaglioti, G., Paoletti, A., Ricci, F.P., Choice of collimators for a crystal spectrometer for neutron diffraction (1958) Nucl. Instrum. Meth., 3, pp. 223-228Lehninger, A.L., Nelson, D.L., Cox, M.M., (1995) Biochemistry Principles. second ed., , Savier, SPLessing, P.A., Mixed-cation oxide powders via polymeric precursors (1989) Am. Cermic Soc. Bull., 68, pp. 1002-1007Bose, S., Wu, Y.J., Synthesis of Al2 O3 - CeO2 mixed oxide nano-powders (2005) J. Am. Ceramic Soc., 88, pp. 1999-2002Bose, S., Wu, Y.J., (2006) Nanotechnology, 17, p. 4327Ghoneim, N.M., Hanafi, S., Abo El-Enein, S.A., Characteristics and effect of thermal-treatment on surface texture of ultrafine zirconia powders (1987) J. Mater. Sci., 22, pp. 791-797Cabot, A., Arbiol, J., Rossinyol, E., Morante, J.R., Chen, F., Liub, M., Synthesis of tin oxide nanostructures with controlled particle size using mesoporous frameworks (2004) Electrochem. Solid-State Lett., 7, pp. G93-G97Lu, J., Fang, Z.Z., Synthesis and characterization of nanoscaled cerium(IV) oxide via a solid-state mechanochemical method (2006) J. Am. Ceramic Soc., 89, pp. 842-847Stanciu, L.A., Kodash, V.Y., Groza, J.R., Effects of heating rate on densification and grain growth during field-assisted sintering of alpha-Al2 O3 and MoSi2 powders (2001) Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 32, p. 263
Production And Electrochemical Properties Of Limn2o4 Thin Films Via A Proteic Sol-gel Process
LiMn2O4 thin films were obtained by a proteic sol-gel process using the coconut water as solvent of salts. X-ray diffractions showed a spinel phase with Fd3m space group. The capacity of lithium charge was 37 mAh/cm2-μm for thin film annelead at 800°C.20-21242246Thackeray, M.M., Yang, S.-H., (1998) Electrochemical and Solid State Letters, 1, p. 7Lee, Y.-S., Sun, Y.-K., Nahm, K.-S., (1998) Solid States Ionics, 109, p. 285Choi, S., Manthiram, A., (2000) Journal of Electrochemical Society, 147, p. 1623Gummow, R.J., De Kock, A., Thackeray, M.M., (1994) Solid States Ionics, 69Park, Y.J., Kim, J.G., Kim, M.K., (1998) Journal of Power Sources, 76, p. 41Macedo, M.A., (1998), Brazilian Patent , 9804719.1Duque, J.G., Macedo, M.A., Moreno, N.O., (2000) Physica Status Solidi B, 200, p. 413Duque, J.G., Macedo, M.A., Moreno, N.O., Lopez, J.L., Pfanes, H.D., (2001) Journal of Magnetismand Magnetic Materials, 226-232, p. 1424Montes, P.J., Valério, M.E.G., Macedo, M.A., Cunha, F., Sasaki, J.M., (2003) Microelectronics Journal, 34, p. 557Meneses, C.T., Macedo, M.A., Vicentin, F.C., (2003) Microelectronics Journal, 34, p. 561Santos, J.V.A., Macedo, M.A., Cunha, F., Sasaki, J.M., Duque, J.G.S., (2003) Microelectronics Journal, 34, p. 565PalacÃn, M.R., Tarascon, J.M., (2000) Journal of Electrochemical Society, 147, p. 84
A simple method to obtain Fe-doped CeO2 nanocrystals at room temperature
AbstractCe1−xFexO2 nanocrystals (0<x<0.05) have been synthesized at room temperature using the coprecipitation method. The samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and magnetization measurements as a function of field. The XRD results and Rietveld refinement analysis show that all particles have a crystalline structure isomorphous to the host structure (CeO2), with average size of 9nm. This information was also confirmed by TEM images in which it is shown that the particles present spherical-like shape. The magnetic measurements indicated that the Fe-doped samples exhibit a weak ferromagnetism at room temperature, which increases with the increasing of the Fe content
Magnetic Properties Of Nife2 O4 Nanoparticles Produced By A New Chemical Method
We have investigated the magnetic properties of nickel ferrite (NiFe2 O4) nanoparticles obtained through a new chemical route. X-ray diffraction (XRD) confirms that the spinel phase is already formed at 300 {ring operator} C. Magnetization measurements, M (T, H), have been done in order to compare the results with that found in the literature. As one can see the magnetic moment is not saturated for fields up to 20 kOe and an irreversible behavior of the high field ZFC-FC moment is also found. The effective magnetic moment per molecule evaluated from hysteresis loops at a magnetic field of 20 kOe is smaller than 2 μB/molecule. © 2007 Elsevier B.V. All rights reserved.3982287290Martinez, B., Obradors, X., Balcells, Ll., Rouanet, A., Monty, C., (1998) Phys. Rev. Lett., 80, p. 181Misra, R.D.K., Gubbala, S., Kale, A., Egelhoff Jr., W.F., (2004) Mater. Sci. Eng. B, 111, p. 164Nathani, H., Gubbala, S., Misra, R.D.K., (2005) Mater. Sci. Eng. B, 121, p. 126Oliver, S.A., Oliver, S.A., Hamdeh, H.H., Hoet, J.C., (1999) Phys. Rev. B, 60, p. 3400Zeng, L., Zhao, Z.J., Yang, X.L., Ruan, J.Z., Chen, G., (2002) J. Magn. Magn. Mater., 246, p. 422Chauhan, B.S., Kumar, R., Jadhav, K.M., Singh, M., (2004) J. Magn. Magn. Mater., 283, p. 71Flaschka, H.A., (1967) The EDTA Titrations: An Introduction to Theory and Practice, , Pergamon, OxfordBrooks, K.G., Amarakoon, V.R.W., (1991) J. Am. Ceram. Soc., 74, p. 2513Sankaranarayana, V.K., Pankhurst, Q.A., Dickson, D.P.E., Johson, C.E., (1993) J. Magn. Magn. Mater., 125, p. 199Barb, D., Diamandescu, L., Rusi, A., (1986) J. Mater. Sci., 21, p. 1118Wang, M.L., Shih, Z.W., (1991) J. Crystal Growth, 114, p. 435Kuo, P.C., Yao, Y.D., Tzang, W.I., (1993) J. Appl. Phys., 73, p. 10Pankov, V.V., Pernet, M., Germi, P., Mollard, P., (1993) J. Magn. Magn. Mater., 120, p. 69Gonzalez-Carren, T., Morales, M.P., Serna, C.J., (2000) Mater. Lett., 43, p. 97Zhong, W., Ding, W.P., Zhang, N., Hong, J.M., Yan, Q.J., Du, Y.W., (1997) J. Magn. Magn. Mater., 168, p. 196Srivastava, A., Singh, P., Gupta, M.P., (1987) J. Mater. Sci., 22, p. 1489Lucchini, E., Meriani, S., Slokar, G., (1983) J. Mater. Sci., 18, p. 1331Kubo, O., Ido, T., Yokoyama, H., (1982) IEEE Trans. Magn., 18, p. 1122Huang, J., Zhuang, H., Li, W.L., (2003) Mater. Res. Bull., 38, p. 149Manoharam, S.S., Patio, K.C., (1993) J. Solid State Chem., 102, p. 267Chakraborty, A., Devi, P.S., Maiti, H.S., (1995) J. Mater. Res., 10 (4), p. 918Bhaduri, S., Bhaduri, S.B., Zhou, E., (1998) J. Mater. Res., 13, p. 156Souza, E.A., Duque, J.G.S., Kubota, L., Meneses, C.T., (2007) J. Phys. Chem. Solids, 68, p. 594Kodama, R.H., Berkowitz, A.E., McNiff Jr., E.J., Foner, S., (1996) Phys. Rev. Lett., 77, p. 394Chinnasamy, N., Narayanasamy, A., Ponpandian, N., Chattopadhyay, K., Gueralt, H., Greneche, J.-M., (2000) J. Phys.: Condens. Matter, 12, p. 7795Chinnasamy, C.N., Narayanasamy, A., Ponpandian, N., Chattopadhyay, K., Shinoda, K., Jeyadevan, B., Tohji, K., Nakatani, I., (2001) Phys. Rev. B, 63, p. 18410
Reversal Magnetization Dependence With The Cr And Fe Oxidation States In Yfe1-xcrxo3 (0≤x≤1) Perovskites
In this work, we have carried out a detailed study of the magnetic and structural properties of YFe1-xCrxO3 (0≤x≤1) samples with orthorhombic structure obtained by co-precipitation method. Analysis of X-ray diffraction data using Rietveld refinement show that all samples present an orthorhombic crystal system with space group Pnma. Besides, we have observed a reduction of unit cell volume with increasing of the Cr concentration. SEM images show the formation of grains of micrometer order. X-ray Absorption near edge spectroscopy (XANES) measurements show a shift of absorption edge which can be indicate there is (i) different oxidation states to Fe and Cr ions and/or (ii) a changing in the point symmetry of Fe and Cr ions to the compounds. The magnetization measurements indicate a continuous decreasing of the magnetic transition temperature as function of chromium doping. The reversal magnetization effect was observed to concentrations around x=0.5. Besides, the deviation of the Curie-Weiss law and a weak ferromagnetic behavior observed at room temperature in the M vs H curves can be attributed to the strong magnetic interactions between the transition metals with different oxidation states. © 2016 Elsevier B.V.408949
Synthesis And Characterization Of Nimn2o4 Nanoparticles Using Gelatin As Organic Precursor
Nanoparticles of NiMn2O4 were successfully obtained by mixing gelatin and inorganic salts NiCl2·6H2O and MnCl2·4H2O in aqueous solution. The mixture has been synthesized at different temperatures and resulted in NiMn2O4 nanoparticles with crystallites size in the range of 14-44 nm, as inferred from X-ray powder diffraction (XRPD) data. We have also observed that both the average crystallite size and the unit cell parameters increase with increasing synthesis temperature. Magnetic measurements confirmed the presence of a magnetic transition near 110 K. © 2008.32014e304e307Åsbrink, S., (1997) J. Phys. Chem. Solids, 58, p. 725Lisboa-Filho, P.N., (2004) Mater. Chem. Phys., 85, p. 377Schmidt, R., Brinkman, A.W., (2001) Int. J. Inorg. Mater., 3, p. 1215Mehandjiev, D., (2001) Appl. Catal., 206, p. 13Shen, Yi., (2002) J. Phys. Chem. Solids, 63, p. 947Ashcroft, G., (2006) J. Eur. Ceram. Soc., 26, p. 901Medeiros, A.M.L., (2004) J. Metastable Nanocryst. Mater., 20, p. 399Maia, A.O.G., (2006) J. Non-Cryst. Solids, 352, p. 3729de Menezes, A.S., (2007) J. Non-Cryst. Solids, 353, p. 1091Rietveld, H.M., (1967) Acta Crystallogr., 22, p. 151Young, R.A., (1995) Appl. Crystallogr., 28, p. 366Azároff, L.V., (1968) Elements of X-ray Crystallgraphy, , McGraw-Hill, USAWilliamsom, G.K., Hall, W.H., (1953) Acta Metall., 1, p. 22Baltzer, P.K., White, J.G., (1958) J. Appl. Phys., 29, p. 44
Temperature Dependence Of Coercive Field Of Znfe 2o 4 Nanoparticles
Structural and magnetic measurements on ZnFe 2O 4 nanoparticles obtained through co-precipitation chemical method are reported. The Rietveld analysis of X-ray patterns reveal that (i) our samples are single phase, and (ii) the average particle size increases with synthesis temperature. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization measurements show that the average blocking temperature increases for increasing mean particle size. Besides, one can observe via magnetization measurements that our particle size distribution also increases as a function of synthesis temperature. Finally, we have observed that the coercive field does not decay with the square root of temperature following the Néel relaxation and the Bean-Livingston approaches. In order to fit our experimental data, we have used a generalized model that proposes a temperature dependence of blocking temperature due to the coexistence of blocked and unblocked particles. This proposed generalized model shows good agreement with our experimental results. © 2012 American Institute of Physics.1115Néel, L., (1949) C. R. Acad. Sci., Paris, 228, p. 664Néel, L., (1949) Ann. Geophys., 5, p. 99Kodama, R.H., Makhlouf, S.A., Berkowitz, A.E., (1997) Phys. Rev. Lett., 78, p. 1393. , 10.1103/PhysRevLett.79.1393Kodama, R.H., Berkowitz, A.E., (1999) Phys. Rev. B, 59, p. 6321. , 10.1103/PhysRevB.59.6321De Biasi, E., Ramos, C.A., Zysler, R.D., Romero, H., (2002) Phys. Rev. B, 72, p. 144416. , 10.1103/PhysRevB.65.144416Nunes, W.C., Folly, W.S.D., Sinnecker, J.P., Novak, M.A., (2004) Phys. Rev. B, 70, p. 14419. , 10.1103/PhysRevB.70.014419Allia, P., (2001) Phys. Rev. B, 64, p. 144420. , Marco Coisson, Paola Tiberto, Franco Vinai, Marcelo Knobel, M. A. Novak, and W. C. Nunes, 10.1103/PhysRevB.64.144420Li, F.S., Wang, L., Wang, J.B., Zhou, Q.G., Zhou, X.Z., Kunkel, H.P., Williams, G.J., (2004) J. Magn. Magn. Mater., 268, p. 332. , 10.1016/S0304-8853(03)00544-4Jayadevan, B., Tohji, K., Nakatsuka, K., Narayanasamy, A., (2000) J. Magn. Magn. Mater., 217, p. 99. , 10.1016/S0304-8853(00)00108-6Rietveld, H.M., (1967) Acta Crystallogr., 22, p. 151. , 10.1107/S0365110X67000234Young, R.A., Sakthivel, A., Moss, T.S., Paiva-Santos, C.O., (1995) J. Appl. Crystallogr., 28, p. 366. , 10.1107/S0021889895002160Zhao, N.N., (2008) Langmuir, 24, p. 991. , 10.1021/la702848xLim, B., (2009) Adv. Funct. Mater., 19, p. 189. , 10.1002/adfm.200801439Zysler, R.D., Fiorani, D., Testa, A.M., (2001) J. Magn. Magn. Mater., 244, p. 5. , 10.1016/S0304-8853(00)01328-7Zysler, R.D., (2006) Physica B, 384, p. 277. , 10.1016/j.physb.2006.06.010Wu, J.J., (2006) J. Phys. Chem. B, 110, p. 18108. , 10.1021/jp0644661Salgueirino-Maceira, V., Spasova, M., Farle, M., (2005) Adv. Funct. Mater., 15, p. 1036. , 10.1002/adfm.200400469Caruso, F., Spasova, M., Saigueirino-Maceira, V., Lizmarzan, L.M., (2001) Adv. Mater., 13, p. 1090. , 10.1002/1521-4095(200107)13:14<1090::AID-ADMA1090>3.0.CO;2-HZhu, L.P., Xiao, H.M., Fu, S.Y., (2007) Cryst. Growth Des., 7, p. 177. , 10.1021/cg060454tCangussu, D., Nunes, W.C., Da, H.L., Corra, S., MacEdo, W.A.A., Knobel, M., Alves, O.L., Mazali, I.O., (2009) J. Appl. Phys., 105, p. 013901. , 10.1063/1.3054173Kneller, E.F., Luborsky, F.E., (1963) J. Appl. Phys., 34, p. 656. , 10.1063/1.1729324Pfeiffer, H., (1990) Phys. Status Solidi A, 118, p. 295. , 10.1002/pssa.v118:1Vavassori, P., Angeli, E., Bisero, D., Spizzo, F., Ronconi, F., (2001) Appl. Phys. Lett., 79, p. 2225. , 10.1063/1.1406986Hamdeh, H.H., Ho, J.C., Oliver, S.A., Willey, R.J., Oliveri, G., Busca, G., (1997) J. Appl. Phys., 81, p. 1851. , 10.1063/1.364068Dormann, J.L., Fiorani, D., Tronc, E., (1999) J. Magn. Magn. Mater., 202, p. 251. , 10.1016/S0304-8853(98)00627-1Dormann, J.L., Fiorani, D., Tronc, E., (1997) Adv. Chem. Phys., 98, p. 283. , 10.1002/SERIES2007Winkler, E., Zysler, R.D., Vasquez Mansilla, M., Fiorani, D., (2005) Phys. Rev. B, 72, p. 132409. , 10.1103/PhysRevB.72.132409Zysler, R.D., Ramos, C.A., De Biasi, E., Romero, H., Ortega, A., Fiorani, D., (2000) J. Magn. Magn. Mater., 221, p. 37. , 10.1016/S0304-8853(00)00368-1De Biasi, E., Ramos, C.A., Zysler, R.D., (2003) J. Magn. Magn. Mater., 262, p. 235. , 10.1016/S0304-8853(02)01496-8Tronc, E., (2003) J. Magn. Magn. Mater., 262, p. 6. , 10.1016/S0304-8853(03)00011-8Shim, J.H., Lee, S., Hye Park, J., Han, S., Jeong, Y.H., Whan Cho, Y., (2006) Phys. Rev. B, 73, p. 064404. , 10.1103/PhysRevB.73.064404Hofmann, M., Campbell, S.J., Ehrhardt, H., Feyerherm, R., (2004) J. Mater. Sci., 39, p. 5057. , 10.1023/B:JMSC.0000039185.80910.5
Synthesis and magnetic interaction on concentrated Fe3O4 nanoparticles obtained by the co-precipitation and hydrothermal chemical methods
In this work, a comparative study of the synthesis and magnetic properties of Fe3O4 nanoparticles obtained by the co-precipitation and hydrothermal methods with the adding of the sucrose as a chelating agent is reported. The analysis of transmission electron microscopy (TEM) show that particles are spherical-like with an average particle size ranging of 3 ≤d ≤ 10 nm. Magnetization measurements as a function of an applied magnetic field and temperature are consistent with a superparamagnetic behavior with small TB values. The analysis of the MvsH loops measured at T = 2 K and Zero-Field-Cooled and Field-Cooled (ZFC−FC) curves allows us to estimate the average diameter of Fe3O4 nanoparticles. These results are in good agreement with those obtained through X-ray diffraction (XRD) data (by using Scherrer equation and Williamson-Hall plot) and slightly smaller than those estimated using TEM images. Finally, ZFC−FC data are also used to evaluate the effective anisotropy constants, which are similar to those values found in literature considering the average sizes values estimated by different techniques468Part A1114911115