2 research outputs found

    Full-wave modeling of lower hybrid waves on Alcator C-Mod

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 225-237).This thesis focuses on several aspects of the Lower Hybrid (LH) wave physics, the common theme being the development of full-wave simulation codes based on Finite Element Methods (FEM) used in support of experiments carried out on the Alcator C-Mod tokamak. In particular, two non-linear problems have been adressed: high power antenna-plasma coupling and current drive (CD). In both cases, direct solution of the wave equation allowed testing the validity of approximations which were historically done and consider full-wave effects and realistic geometries. The first code, named POND, takes into account the interaction of high power LH waves and the plasma edge based on the non-linear ponderomotive force theory. Simulations found the effect of ponderomotive forces to be compatible with the density depletion which is measured in front of the antenna in presence of high power LH waves. The second code, named LHEAF, solves the problem of LH wave propagation in a hot non- Maxwellian plasma. The electron Landau damping (ELD) effect was expressed as a convolution integral along the magnetic field lines and the resultant integro-differential Helmholtz equation was solved iteratively. A 3D Fokker-Planck code and a synthetic Hard X-Ray (HXR) diagnostic modules are used to calculate the self-consistent electron distribution function and evaluate the resulting CD and bremsstrahlung radiation. LHEAF has been used to investigate the anomalous degradation of LHCD efficiency at high density. Results show that while a small fraction of the launched power can be absorbed in the SOL by collisions, it is a strong upshift in the nii spectrum that makes the overall LHCD efficiency low by allowing the waves to Landau damp near the edge. Wavelet analysis of the full-wave fields identified spectral broadening to occur after the waves reflect and propagate in the SOL. This work explains why on Alcator C-Mod the eikonal approximation is valid only in the low to moderate density regime, and why parasitic phenomena introduced in previous work can reproduce phenomenologically well the experimental results.by Orso Meneghini.Ph.D

    Investigation of lower hybrid physics through power modulation experiments on Alcator C-Mod

    Get PDF
    Lower hybrid current drive (LHCD) is an attractive tool for off-axis current profile control in magnetically confined tokamak plasmas and burning plasmas (ITER), because of its high current drive efficiency. The LHCD system on Alcator C-Mod operates at 4.6 GHz, with ~ 1 MW of coupled power, and can produce a wide range of launched parallel refractive index (n[subscript ∣∣]) spectra. A 32 chord, perpendicularly viewing hard x-ray camera has been used to measure the spatial and energy distribution of fast electrons generated by lower hybrid (LH) waves. Square-wave modulation of LH power on a time scale much faster than the current relaxation time does not significantly alter the poloidal magnetic field inside the plasma and thus allows for realistic modeling and consistent plasma conditions for different n[subscript ∣∣] spectra. Inverted hard x-ray profiles show clear changes in LH-driven fast electron location with differing n[subscript ∣∣]. Boxcar binning of hard x-rays during LH power modulation allows for ~ 1 ms time resolution which is sufficient to resolve the build-up, steady-state, and slowing-down phases of fast electrons. Ray-tracing/Fokker-Planck modeling in combination with a synthetic hard x-raydiagnostic shows quantitative agreement with the x-ray data for high n[subscript ∣∣] cases. The time histories of hollow x-ray profiles have been used to measure off-axis fast electron transport in the outer half of the plasma, which is found to be small on a slowing down time scale.United States. Dept. of Energy (Award DE-FC02-99ER54512)United States. Dept. of Energy (Award DE-AC02-76CH03073
    corecore