16 research outputs found

    C6orf10 low-frequency and rare variants in italian multiple sclerosis patients

    Get PDF
    In light of the complex nature of multiple sclerosis (MS) and the recently estimated contribution of low-frequency variants into disease, decoding its genetic risk components requires novel variant prioritization strategies. We selected, by reviewing MS Genome Wide Association Studies (GWAS), 107 candidate loci marked by intragenic single nucleotide polymorphisms (SNPs) with a remarkable association (p-value <= 5 x 10(-6)). A whole exome sequencing (WES)-based pilot study of SNPs with minor allele frequency (MAF) <= 0.04, conducted in three Italian families, revealed 15 exonic low-frequency SNPs with affected parent-child transmission. These variants were detected in 65/120 Italian unrelated MS patients, also in combination (22 patients). Compared with databases (controls gnomAD, dbSNP150, ExAC, Tuscany-1000 Genome), the allelic frequencies of C6orf10 rs 16870005 and IL2RA rs12722600 were significantly higher (i.e., controls gnomAD, p = 9.89 x 10(-7) and p < 1 x 10(-20)). TET2 rs61744960 and TRAF3 rs138943371 frequencies were also significantly higher, except in Tuscany-1000 Genome. Interestingly, the association of C6orf10 rs16870005 (Ala431Thr) with MS did not depend on its linkage disequilibrium with the HLA-DRB1 locus. Sequencing in the MS cohort of the C6orf10 3' region revealed 14 rare mutations (10 not previously reported). Four variants were null, and significantly more frequent than in the databases. Further, the C6orf10 rare variants were observed in combinations, both intra-locus and with other low-frequency SNPs. The C6orf10 Ser389Xfr was found homozygous in a patient with early onset of the MS. Taking into account the potentially functional impact of the identified exonic variants, their expression in combination at the protein level could provide functional insights in the heterogeneous pathogenetic mechanisms contributing to MS.In light of the complex nature of multiple sclerosis (MS) and the recently estimated contribution of low-frequency variants into disease, decoding its genetic risk components requires novel variant prioritization strategies. We selected, by reviewing MS Genome Wide Association Studies (GWAS), 107 candidate loci marked by intragenic single nucleotide polymorphisms (SNPs) with a remarkable association (p-value ≤ 5 × 10−6). A whole exome sequencing (WES)-based pilot study of SNPs with minor allele frequency (MAF) ≤ 0.04, conducted in three Italian families, revealed 15 exonic low-frequency SNPs with affected parent-child transmission. These variants were detected in 65/120 Italian unrelated MS patients, also in combination (22 patients). Compared with databases (controls gnomAD, dbSNP150, ExAC, Tuscany-1000 Genome), the allelic frequencies of C6orf10 rs16870005 and IL2RA rs12722600 were significantly higher (i.e., controls gnomAD, p = 9.89 × 10−7 and p < 1 × 10−20). TET2 rs61744960 and TRAF3 rs138943371 frequencies were also significantly higher, except in Tuscany-1000 Genome. Interestingly, the association of C6orf10 rs16870005 (Ala431Thr) with MS did not depend on its linkage disequilibrium with the HLA-DRB1 locus. Sequencing in the MS cohort of the C6orf10 3′ region revealed 14 rare mutations (10 not previously reported). Four variants were null, and significantly more frequent than in the databases. Further, the C6orf10 rare variants were observed in combinations, both intra-locus and with other low-frequency SNPs. The C6orf10 Ser389Xfr was found homozygous in a patient with early onset of the MS. Taking into account the potentially functional impact of the identified exonic variants, their expression in combination at the protein level could provide functional insights in the heterogeneous pathogenetic mechanisms contributing to MS

    Wireless ultrasound-guided vacuum-assisted breast biopsy: Experience in clinical practice at European Institute of Oncology

    Get PDF
    In the last few years, ultrasound-guided vacuum-assisted breast biopsy (US-VABB) has replaced surgical biopsy due to higher diagnostic accuracy and lower patient discomfort, and, at present, an even greater possibility is represented by the new wireless ultrasound-guided VAB device (Wi-UVAB). The purpose of our study is to determine the diagnostic accuracy of this new device in a sizeable representative number of patients. From January 2014 to June 2018, 168 biopsies were performed in our institution using the new Wi-UVAB device. We analyzed sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of biopsies obtained with the new device using surgical results as reference point, following patients for at least one year. In our cohort, we obtained a complete sensitivity of 97.5%, an absolute sensitivity of 94.3%, a complete specificity of 98%, and an absolute specificity of 98%. The positive predictive value of the procedure was 97.5% while the negative predictive value was 98%. The diagnostic accuracy was 98%. The Wi-UVAB is a safe procedure with high diagnostic accuracy, comparable to that of the traditional vacuum-assisted breast biopsy and even higher than that of core needle biopsy (CNB). Moreover, the Wi-UVAB is easy to use and shows low costs as core needle biopsy (CNB)

    COVID-19 And Breast Fine Needle Aspiration Cytology Method: What Should We Change?

    Get PDF
    Air-dried slide preparation for fine needle aspiration cytology procedures, is currently considered unsafe because of the risk of infectious aerosols of Coronavirus 19. This study compares the safety and accuracy of two different protocols, one with and one without air-dried slides

    Sensitivity of imaging for multifocal-multicentric breast carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This retrospective study aims to determine: 1) the sensitivity of preoperative mammography (Mx) and ultrasound (US), and re-reviewed Mx to detect multifocal multicentric breast carcinoma (MMBC), defined by pathology on surgical specimens, and 2) to analyze the characteristics of both detected and undetected foci on Mx and US.</p> <p>Methods</p> <p>Three experienced breast radiologists re-reviewed, independently, digital mammography of 97 women with MMBC pathologically diagnosed on surgical specimens. The radiologists were informed of all neoplastic foci, and blinded to the original mammograms and US reports. With regards to Mx, they considered the breast density, number of foci, the Mx characteristics of the lesions and their BI-RADS classification. For US, they considered size of the lesions, BI-RADS classification and US pattern and lesion characteristics. According to the histological size, the lesions were classified as: index cancer, 2nd lesion, 3rd lesion, and 4th lesion. Any pathologically identified malignant foci not previously described in the original imaging reports, were defined as undetected or missed lesions. Sensitivity was calculated for Mx, US and re-reviewed Mx for detecting the presence of the index cancer as well as additional satellite lesions.</p> <p>Results</p> <p>Pathological examination revealed 13 multifocal and 84 multicentric cancers with a total of 303 malignant foci (282 invasive and 21 non invasive). Original Mx and US reports had an overall sensitivity of 45.5% and 52.9%, respectively. Mx detected 83/97 index cancers with a sensitivity of 85.6%. The number of lesions <it>un</it>detected by original Mx was 165/303. The Mx pattern of breasts with undetected lesions were: fatty in 3 (1.8%); scattered fibroglandular density in 40 (24.3%), heterogeneously dense in 91 (55.1%) and dense in 31 (18.8%) cases. In breasts with an almost entirely fatty pattern, Mx sensitivity was 100%, while in fibroglandular or dense pattern it was reduced to 45.5%. Re-reviewed Mx detected only 3 additional lesions. The sensitivity of Mx was affected by the presence of dense breast tissue which obscured lesions or by an incorrect interpretation of suspicious findings.</p> <p>US detected 73/80 index cancers (sensitivity of 91.2%), US missed 117 malignant foci with a mean tumor diameter of 6.5 mm; the sensitivity was 52.9%</p> <p>Undetected lesions by US were those smallest in size and present in fatty breast or in the presence of microcalcifications without a visible mass.</p> <p>US sensitivity was affected by the presence of fatty tissue or by the extent of calcification.</p> <p>Conclusion</p> <p>Mx missed MMBC malignant foci more often in dense or fibroglandular breasts. US missed small lesions in mainly fatty breasts or when there were only microcalcifications. The combined sensitivity of both techniques to assess MMBC was 58%. We suggest larger studies on multimodality imaging.</p

    Clinical performance of contrast-enhanced spectral mammography in pre-surgical evaluation of breast malignant lesions in dense breasts: a single center study

    Full text link
    To compare the efficacy of contrast-enhanced spectral mammography, with ultrasound, full field digital mammography and magnetic resonance imaging in detection and size estimation of histologically proven breast tumors.Purpose To compare the efficacy of contrast-enhanced spectral mammography, with ultrasound, full field digital mammog- raphy and magnetic resonance imaging in detection and size estimation of histologically proven breast tumors. Methods This open-label, single center, prospective study, included 160 dense breast women with at least one suspicious mammary lesion evaluated by ultrasound, full field digital mammography and magnetic resonance imaging in whom a mammary tumor was histologically proven after surgery performed at the European Institute of Oncology between January 2013 and December 2015. Following the complete diagnostic procedure, the patients were further investigated by contrast- enhanced spectral mammography prior to surgery. Results Overall, the detection rate of malignant breast lesions (in situ and invasive) was 93.8% (165/176) for contrast- enhanced spectral mammography, 94.4% (168/178) for ultrasound, 85.5 (147/172) for full field digital mammography and 97.7% (173/177) for magnetic resonance imaging. Radiological measurements were concordant with the post-surgical pathological measurements of the invasive tumor (i.e., within 5 mm) in: 64.6% for contrast-enhanced spectral mammography, 62.0% for ultrasound, 45.2% for full field digital mammography (p &lt; 0.0001) and 69.9% for magnetic resonance imaging (p = 0.28); underestimated in: 17.4% for contrast-enhanced spectral mammography, 19.6% for ultrasound, 24.2% for full field digital mammography (p = 0.03) and 6.7% for magnetic resonance imaging (p = 0.0005); and overestimated in: 16.2% for contrast-enhanced spectral mammography, 16.6% for ultrasound, 16.6% for full field digital mammography and 22.7% for magnetic resonance imaging (p = 0.02). Conclusions Our data suggest that contrast-enhanced spectral mammography improves on full field digital mammography and is comparable to ultrasound and magnetic resonance imaging in terms of detection sensitivity and size estimation of malignant lesions in dense breasts

    An Unenhanced Breast MRI Protocol Based on Diffusion-Weighted Imaging: A Retrospective Single-Center Study on High-Risk Population for Breast Cancer

    Full text link
    Purpose: This study aimed to investigate the use of contrast-free magnetic resonance imaging (MRI) as an innovative screening method for detecting breast cancer in high-risk asymptomatic women. Specifically, the researchers evaluated the diagnostic performance of diffusion-weighted imaging (DWI) in this population. Methods: MR images from asymptomatic women, carriers of a germline mutation in either the BRCA1 or BRCA2 gene, collected in a single center from January 2019 to December 2021 were retrospectively evaluated. A radiologist with experience in breast imaging (R1) and a radiology resident (R2) independently evaluated DWI/ADC maps and, in case of doubts, T2-WI. The standard of reference was the pathological diagnosis through biopsy or surgery, or ≥1 year of clinical and radiological follow-up. Diagnostic performances were calculated for both readers with a 95% confidence interval (CI). The agreement was assessed using Cohen’s kappa (κ) statistics. Results: Out of 313 women, 145 women were included (49.5 ± 12 years), totaling 344 breast MRIs with DWI/ADC maps. The per-exam cancer prevalence was 11/344 (3.2%). The sensitivity was 8/11 (73%; 95% CI: 46–99%) for R1 and 7/11 (64%; 95% CI: 35–92%) for R2. The specificity was 301/333 (90%; 95% CI: 87–94%) for both readers. The diagnostic accuracy was 90% for both readers. R1 recalled 40/344 exams (11.6%) and R2 recalled 39/344 exams (11.3%). Inter-reader reproducibility between readers was in moderate agreement (κ = 0.43). Conclusions: In female carriers of a BRCA1/2 mutation, breast DWI supplemented with T2-WI allowed breast cancer detection with high sensitivity and specificity by a radiologist with extensive experience in breast imaging, which is comparable to other screening tests. The findings suggest that DWI and T2-WI have the potential to serve as a stand-alone method for unenhanced breast MRI screening in a selected population, opening up new perspectives for prospective trials

    A Score to Predict the Malignancy of a Breast Lesion Based on Different Contrast Enhancement Patterns in Contrast-Enhanced Spectral Mammography

    Full text link
    Background: To create a predictive score of malignancy of a breast lesion based on the main contrast enhancement features ascertained by contrast-enhanced spectral mammography (CESM). Methods: In this single-centre prospective study, patients with suspicious breast lesions (BIRADS > 3) were enrolled between January 2013 and February 2022. All participants underwent CESM prior to breast biopsy, and eventually surgery. A radiologist with 20 years’ experience in breast imaging evaluated the presence or absence of enhancement and the following enhancement descriptors: intensity, pattern, margin, and ground glass. A score of 0 or 1 was given for each descriptor, depending on whether the enhancement characteristic was predictive of benignity or malignancy (both in situ and invasive). Then, an overall enhancement score ranging from 0 to 4 was obtained. The histological results were considered the gold standard in the evaluation of the relationship between enhancement patterns and malignancy. Results: A total of 321 women (median age: 51 years; range: 22–83) with 377 suspicious breast lesions were evaluated. Two hundred forty-nine lesions (66%) have malignant histological results (217 invasive and 32 in situ). Considering an overall enhancement score ≥ 2 as predictive of malignancy, we obtain an overall sensitivity of 92.4%; specificity of 89.8%; positive predictive value of 94.7%; and negative predictive value of 85.8%. Conclusions: Our proposed predictive score on the enhancement descriptors of CESM to predict the malignancy of a breast lesion shows excellent results and can help in early breast cancer diagnosis and in avoiding unnecessary biopsies

    Contrast-Enhanced Spectral Mammography in the Evaluation of Breast Microcalcifications: Controversies and Diagnostic Management

    Full text link
    The aim of this study was to evaluate the diagnostic performance of contrast-enhanced spectral mammography (CESM) in predicting breast lesion malignancy due to microcalcifications compared to lesions that present with other radiological findings. Three hundred and twenty-one patients with 377 breast lesions that underwent CESM and histological assessment were included. All the lesions were scored using a 4-point qualitative scale according to the degree of contrast enhancement at the CESM examination. The histological results were considered the gold standard. In the first analysis, enhancement degree scores of 2 and 3 were considered predictive of malignity. The sensitivity (SE) and positive predictive value (PPV) were significative lower for patients with lesions with microcalcifications without other radiological findings (SE = 53.3% vs. 82.2%, p-value p-value = 0.049, respectively). On the contrary, the specificity (SP) and negative predictive value (NPV) were significative higher among lesions with microcalcifications without other radiological findings (SP = 95.8% vs. 84.2%, p-value = 0.026 and NPV = 82.9% vs. 55.2%, p-value p-value p-value: 0.005) were significantly lower among lesions with microcalcifications without other radiological findings, while the SP (85.9% vs. 50.9%, p-value < 0.001) was higher. The enhancement of microcalcifications has low sensitivity in predicting malignancy. However, in certain controversial cases, the absence of CESM enhancement due to its high negative predictive value can help to reduce the number of biopsies for benign lesion

    Contrast-Enhanced Spectral Mammography in the Evaluation of Breast Microcalcifications: Controversies and Diagnostic Management

    Full text link
    The aim of this study was to evaluate the diagnostic performance of contrast-enhanced spectral mammography (CESM) in predicting breast lesion malignancy due to microcalcifications compared to lesions that present with other radiological findings. Three hundred and twenty-one patients with 377 breast lesions that underwent CESM and histological assessment were included. All the lesions were scored using a 4-point qualitative scale according to the degree of contrast enhancement at the CESM examination. The histological results were considered the gold standard. In the first analysis, enhancement degree scores of 2 and 3 were considered predictive of malignity. The sensitivity (SE) and positive predictive value (PPV) were significative lower for patients with lesions with microcalcifications without other radiological findings (SE = 53.3% vs. 82.2%, p-value &lt; 0.001 and PPV = 84.2% vs. 95.2%, p-value = 0.049, respectively). On the contrary, the specificity (SP) and negative predictive value (NPV) were significative higher among lesions with microcalcifications without other radiological findings (SP = 95.8% vs. 84.2%, p-value = 0.026 and NPV = 82.9% vs. 55.2%, p-value &lt; 0.001, respectively). In a second analysis, degree scores of 1, 2, and 3 were considered predictive of malignity. The SE (80.0% vs. 96.8%, p-value &lt; 0.001) and PPV (70.6% vs. 88.3%, p-value: 0.005) were significantly lower among lesions with microcalcifications without other radiological findings, while the SP (85.9% vs. 50.9%, p-value &lt; 0.001) was higher. The enhancement of microcalcifications has low sensitivity in predicting malignancy. However, in certain controversial cases, the absence of CESM enhancement due to its high negative predictive value can help to reduce the number of biopsies for benign lesion

    Contrast-enhanced mammography BI-RADS: a case-based approach to radiology reporting

    Full text link
    Abstract Contrast-enhanced mammography (CEM) is a relatively recent diagnostic technique increasingly being utilized in clinical practice. Until recently, there was a lack of standardized reporting for CEM findings. However, this has changed with the publication of a supplement in the Breast Imaging Reporting and Data System (BI-RADS). A comprehensive understanding of CEM is essential for further enhancing its role in both screening and managing patients with breast malignancies. CEM can also be beneficial for problem-solving, improving the management of uncertain breast findings. Practitioners in this field should become more cognizant of how and when to employ this technique and interpret the various CEM findings. This paper aims to outline the key findings in the updated version of the BI-RADS specifically dedicated to CEM. Additionally, it will present some clinical cases commonly encountered in clinical practice. Critical relevance statement Standardized reporting and a thorough understanding of CEM findings are pivotal for advancing the role of CEM in screening and managing breast cancer patients. This standardization contributes significantly to integrating CEM as an essential component of daily clinical practice. Key points • A complete knowledge and understanding of the findings outlined in the new BI-RADS CEM are necessary for accurate reporting. • BI-RADS CEM supplement is intuitive and practical to use. • Standardization of the CEM findings enables more accurate patient management. Graphical Abstrac
    corecore