13 research outputs found

    The p53 Inhibitor MDM2 Facilitates Sonic Hedgehog-Mediated Tumorigenesis and Influences Cerebellar Foliation

    Get PDF
    Disruption of cerebellar granular neuronal precursor (GNP) maturation can result in defects in motor coordination and learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh) pathway is important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2 (Mdm2puro), which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia, reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2 accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding. Significantly, loss of MDM2 in Ptch1+/− mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs, with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis

    p53 in the CNS: Perspectives on Development, Stem Cells, and Cancer

    No full text
    The p53 tumor suppressor potently limits the growth of immature and mature neurons under conditions of cellular stress. Although loss of p53 function contributes to the pathogenesis of central nervous system (CNS) tumors, excessive p53 function is implicated in neural tube defects, embryonic lethality, and neuronal degeneration. Thus, p53 function must be tightly controlled. The anti-proliferative properties of p53 are mediated, in part, through the induction of apoptosis, cell cycle arrest, and senescence. Although there is still much to be learned about the role of p53 in these processes, recent evidence supports exciting new roles for p53 in a wide range of processes, including neural precursor cell self-renewal, differentiation, and cell fate decisions. Understanding the full repertoire of p53 function in CNS development and tumorigenesis may provide us with novel points of therapeutic intervention for human diseases of the CNS

    Mdm2 Regulates p53 Independently of p19(ARF) in Homeostatic Tissues

    No full text
    Tumor suppressor proteins must be exquisitely regulated since they can induce cell death while preventing cancer. For example, the p19(ARF) tumor suppressor (p14(ARF) in humans) appears to stimulate the apoptotic function of the p53 tumor suppressor to prevent lymphomagenesis and carcinogenesis induced by oncogene overexpression. Here we present a genetic approach to defining the role of p19(ARF) in regulating the apoptotic function of p53 in highly proliferating, homeostatic tissues. In contrast to our expectation, p19(ARF) did not activate the apoptotic function of p53 in lymphocytes or epithelial cells. These results demonstrate that the mechanisms that control p53 function during homeostasis differ from those that are critical for tumor suppression. Moreover, the Mdm2/p53/p19(ARF) pathway appears to exist only under very restricted conditions

    mdm2 Is Critical for Inhibition of p53 during Lymphopoiesis and the Response to Ionizing Irradiation

    No full text
    The function of the p53 tumor suppressor protein must be highly regulated because p53 can cause cell death and prevent tumorigenesis. In cultured cells, the p90(MDM2) protein blocks the transcriptional activation domain of p53 and also stimulates the degradation of p53. Here we provide the first conclusive demonstration that p90(MDM2) constitutively regulates p53 activity in homeostatic tissues. Mice with a hypomorphic allele of mdm2 revealed a heretofore unknown role for mdm2 in lymphopoiesis and epithelial cell survival. Phenotypic analyses revealed that both the transcriptional activation and apoptotic functions of p53 were increased in these mice. However, the level of p53 protein was not coordinately increased, suggesting that p90(MDM2) can inhibit the transcriptional activation and apoptotic functions of p53 in a manner independent of degradation. Cre-mediated deletion of mdm2 caused a greater accumulation of p53, demonstrating that p90(MDM2) constitutively regulates both the activity and the level of p53 in homeostatic tissues. The observation that only a subset of tissues with activated p53 underwent apoptosis indicates that factors other than p90(MDM2) determine the physiological consequences of p53 activation. Furthermore, reduction of mdm2 in vivo resulted in radiosensitivity, highlighting the importance of mdm2 as a potential target for adjuvant cancer therapies

    The mSin3A Chromatin-Modifying Complex Is Essential for Embryogenesis and T-Cell Development

    No full text
    The corepressor mSin3A is the core component of a chromatin-modifying complex that is recruited by multiple gene-specific transcriptional repressors. In order to understand the role of mSin3A during development, we generated constitutive germ line as well as conditional msin3A deletions. msin3A deletion in the developing mouse embryo results in lethality at the postimplantation stage, demonstrating that it is an essential gene. Blastocysts derived from preimplantation msin3A null embryos and mouse embryo fibroblasts (MEFs) lacking msin3A display a significant reduction in cell division. msin3A null MEFs also show mislocalization of the heterochromatin protein, HP1α, without alterations in global histone acetylation. Heterozygous msin3A(+/−) mice with a systemic twofold decrease in mSin3A protein develop splenomegaly as well as kidney disease indicative of a disruption of lymphocyte homeostasis. Conditional deletion of msin3A from developing T cells results in reduced thymic cellularity and a fivefold decrease in the number of cytotoxic (CD8) T cells, while helper (CD4) T cells are unaffected. We show that CD8 development is dependent on mSin3A at a step downstream of T-cell receptor signaling and that loss of mSin3A specifically decreases survival of double-positive and CD8 T cells. Thus, msin3A is a pleiotropic gene which, in addition to its role in cell cycle progression, is required for the development and homeostasis of cells in the lymphoid lineage

    An Integrated Genetic-Genomic Approach for the Identification of Novel Cancer Loci in Mice Sensitized to c-Myc–Induced Apoptosis

    No full text
    Deregulated c-Myc is associated with a wide range of human cancers. In many cell types, overexpression of c-Myc potently promotes cell growth and proliferation concomitant with the induction of apoptosis. Secondary genetic events that shift this balance either by increasing growth and proliferation or limiting apoptosis are likely to cooperate with c-Myc in tumorigenesis. Here, the authors have performed large-scale insertional mutagenesis in Eµ-c-myc mice that, through mdm2 loss of function mutations, are sensitized to apoptosis. The authors chose to use this genetic background based on the hypothesis that the high level of apoptosis induced by c-Myc overexpression in MDM2-deficient mice would act as a rate-limiting barrier for lymphoma development. As a result, it was predicted that the spectrum of retroviral insertions would be shifted toward loci that harbor antiapoptotic genes. Nine novel common insertion sites (CISs) specific to mice with this sensitized genetic background were identified, suggesting the presence of novel antiapoptotic cancer genes. Moreover, cross-comparing the data to the Retroviral Tagged Cancer Gene Database, the authors identified an additional 23 novel CISs. Here, evidence is presented that 2 genes, ppp1r16b and hdac6, identified at CISs, are bona fide cellular oncogenes. This study highlights the power of combining unique sensitized genetic backgrounds with large-scale mutagenesis as an approach for identifying novel cancer genes
    corecore