293 research outputs found
Diagnóstico de producción en ganado lechero en pastoreo de un grupo ganadero de validación y transferencia de tecnología
The regionalization of framing issues for producers Livestock Group of Validation and Technology Transfer (GGAVATT) from San Jose Miahuatlán Veracruz, Mexico, under the current production of native grass prairie with mainly during the months of higher temperature have a poor performance and thus milk production declines which promotes a great use of concentrated feeds which causes an increase in production cost and less use to them. For this purpose we made a diagnosis of current conditions GGAVATT production, yielding information that helps us source and compared to determine precisely what the effect of applying the proposed alternative. We propose an alternative implementation of pastures with improved pastures needed to produce a greater amount of forage per unit area especially in the colder months.La regionalización de la problemática encuadrando a los productores del Grupo Ganadero de Validación y Transferencia de Tecnología (GGAVATT) de San José Miahuatlán Veracruz, México, bajo la actual situación de producción de praderas básicamente con gramas nativas que durante los meses de menor frío tienen un pobre desempeño y por ende la producción de leche se deteriora lo cual promueve una gran utilización de alimentos concentrados lo que provoca un incremento en el costo de producción y una menor utilidad para estos. Para dicho propósito se realizó un diagnóstico de las condiciones actuales de producción del GGAVATT, arrojando información que nos sirve de partida y de comparación para determinar con precisión cuál es el efecto de aplicar la alternativa propuesta. Se plantea como alternativa la implantación de praderas con pastos mejorados que permitan producir una mayor cantidad de forrajes por unidad de superficie sobre todo en los meses de menor temperatura
Recommended from our members
Rarity of monodominance in hyperdiverse Amazonian forests.
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors
Fast demographic traits promote high diversification rates of Amazonian trees.
The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits ? short turnover times ? are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests
Seasonal drought limits tree species across the Neotropics
AcceptedArticle in Press© 2016 Nordic Society Oikos.Within the tropics, the species richness of tree communities is strongly and positively associated with precipitation. Previous research has suggested that this macroecological pattern is driven by the negative effect of water-stress on the physiological processes of most tree species. This implies that the range limits of taxa are defined by their ability to occur under dry conditions, and thus in terms of species distributions predicts a nested pattern of taxa distribution from wet to dry areas. However, this 'dry-tolerance' hypothesis has yet to be adequately tested at large spatial and taxonomic scales. Here, using a dataset of 531 inventory plots of closed canopy forest distributed across the western Neotropics we investigated how precipitation, evaluated both as mean annual precipitation and as the maximum climatological water deficit, influences the distribution of tropical tree species, genera and families. We find that the distributions of tree taxa are indeed nested along precipitation gradients in the western Neotropics. Taxa tolerant to seasonal drought are disproportionally widespread across the precipitation gradient, with most reaching even the wettest climates sampled; however, most taxa analysed are restricted to wet areas. Our results suggest that the 'dry tolerance' hypothesis has broad applicability in the world's most species-rich forests. In addition, the large number of species restricted to wetter conditions strongly indicates that an increased frequency of drought could severely threaten biodiversity in this region. Overall, this study establishes a baseline for exploring how tropical forest tree composition may change in response to current and future environmental changes in this region.This paper is a product of the RAINFOR and ATDN networks and of ForestPlots.net
researchers (http://www.forestplots.net). RAINFOR and ForestPlots have been
supported by a Gordon and Betty Moore Foundation grant, the European Union’s
Seventh Framework Programme (283080, ‘GEOCARBON’; 282664,
‘AMAZALERT’); European Research Council (ERC) grant ‘Tropical Forests in the
Changing Earth System’ (T-FORCES), and Natural Environment Research Council
(NERC) Urgency Grant and NERC Consortium Grants ‘AMAZONICA’
(NE/F005806/1) and ‘TROBIT’ (NE/D005590/1). Additional funding for fieldwork was
provided by Tropical Ecology Assessment and Monitoring (TEAM) Network, a
collaboration among Conservation International, the Missouri Botanical Garden, the
Smithsonian Institution, and the Wildlife Conservation Society. A.E.M. receives a PhD
scholarship from the T-FORCES ERC grant. O.L.P. is supported by an ERC Advanced
Grant and a Royal Society Wolfson Research Merit Award. We thank Jon J. Lloyd,
Chronis Tzedakis, David Galbraith, and two anonymous reviewers for helpful
comments and Dylan Young for helping with the analyses. This study would not be
possible without the extensive contributions of numerous field assistants and rural
communities in the Neotropical forests. Alfredo Alarcón, Patricia Alvarez Loayza,
Plínio Barbosa Camargo, Juan Carlos Licona, Alvaro Cogollo, Massiel Corrales
Medina, Jose Daniel Soto, Gloria Gutierrez, Nestor Jaramillo Jarama, Laura Jessica
Viscarra, Irina Mendoza Polo, Alexander Parada Gutierrez, Guido Pardo, Lourens
Poorter, Adriana Prieto, Freddy Ramirez Arevalo, Agustín Rudas, Rebeca Sibler and
Javier Silva Espejo additionally contributed data to this study though their RAINFOR
participations. We further thank those colleagues no longer with us, Jean Pierre Veillon,
Samuel Almeida, Sandra Patiño and Raimundo Saraiva. Many data come from Alwyn
Gentry, whose example has inspired new generations to investigate the diversity of the
Neotropics
Does the disturbance hypothesis explain the biomass increase in basin-wide Amazon forest plot data?
Positive aboveground biomass trends have been reported from old-growth forests across the Amazon basin and hypothesized to reflect a large-scale response to exterior forcing. The result could, however, be an artefact due to a sampling bias induced by the nature of forest growth dynamics. Here, we characterize statistically the disturbance process in Amazon old-growth forests as recorded in 135 forest plots of the RAINFOR network up to 2006, and other independent research programmes, and explore the consequences of sampling artefacts using a data-based stochastic simulator. Over the observed range of annual aboveground biomass losses, standard statistical tests show that the distribution of biomass losses through mortality follow an exponential or near-identical Weibull probability distribution and not a power law as assumed by others. The simulator was parameterized using both an exponential disturbance probability distribution as well as a mixed exponential–power law distribution to account for potential large-scale blowdown events. In both cases, sampling biases turn out to be too small to explain the gains detected by the extended RAINFOR plot network. This result lends further support to the notion that currently observed biomass gains for intact forests across the Amazon are actually occurring over large scales at the current time, presumably as a response to climate change
Evolutionary diversity is associated with wood productivity in Amazonian forests
Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity. Amazon forests that contain greater evolutionary diversity and a higher proportion of rare species have higher productivity. While climatic and edaphic variables are together the strongest predictors of productivity, our results show that the evolutionary diversity of tree species in diverse forest stands also influences productivity. As our models accounted for wood density and tree size, they also suggest that additional, unstudied, evolutionarily correlated traits have significant effects on ecosystem function in tropical forests. Overall, our pan-Amazonian analysis shows that greater phylogenetic diversity translates into higher levels of ecosystem function: tropical forest communities with more distantly related taxa have greater wood productivity
Seasonal drought limits tree species across the Neotropics
Within the tropics, the species richness of tree communities is strongly and positively associated with precipitation. Previous research has suggested that this macroecological pattern is driven by the negative effect of water-stress on the physiological processes of most tree species. This process implies that the range limits of taxa are defined by their ability to occur under dry conditions, and thus in terms of species distributions it predicts a nested pattern of taxa distribution from wet to dry areas. However, this ‘dry-tolerance’ hypothesis has yet to be adequately tested at large spatial and taxonomic scales. Here, using a dataset of 531 inventory plots of closed canopy forest distributed across the Western Neotropics we investigated how precipitation, evaluated both as mean annual precipitation and as the maximum climatological water deficit, influences the distribution of tropical tree species, genera and families. We find that the distributions of tree taxa are indeed nested along precipitation gradients in the western Neotropics. Taxa tolerant to seasonal drought are disproportionally widespread across the precipitation gradient, with most reaching even the wettest climates sampled; however, most taxa analysed are restricted to wet areas. Our results suggest that the ‘dry tolerance’ hypothesis has broad applicability in the world's most species-rich forests. In addition, the large number of species restricted to wetter conditions strongly indicates that an increased frequency of drought could severely threaten biodiversity in this region. Overall, this study establishes a baseline for exploring how tropical forest tree composition may change in response to current and future environmental changes in this region
Sensitivity of South American tropical forests to an extreme climate anomaly
The tropical forest carbon sink is known to be drought sensitive, but it is unclear which forests are the most vulnerable to extreme events. Forests with hotter and drier baseline conditions may be protected by prior adaptation, or more vulnerable because they operate closer to physiological limits. Here we report that forests in drier South American climates experienced the greatest impacts of the 2015–2016 El Niño, indicating greater vulnerability to extreme temperatures and drought. The long-term, ground-measured tree-by-tree responses of 123 forest plots across tropical South America show that the biomass carbon sink ceased during the event with carbon balance becoming indistinguishable from zero (−0.02 ± 0.37 Mg C ha−1 per year). However, intact tropical South American forests overall were no more sensitive to the extreme 2015–2016 El Niño than to previous less intense events, remaining a key defence against climate change as long as they are protected
Tree mode of death and mortality risk factors across Amazon forests
The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality rates vary greatly Amazon-wide, on average trees are as likely to die standing as they are broken or uprooted—modes of death with different ecological consequences. Species-level growth rate is the single most important predictor of tree death in Amazonia, with faster-growing species being at higher risk. Within species, however, the slowest-growing trees are at greatest risk while the effect of tree size varies across the basin. In the driest Amazonian region species-level bioclimatic distributional patterns also predict the risk of death, suggesting that these forests are experiencing climatic conditions beyond their adaptative limits. These results provide not only a holistic pan-Amazonian picture of tree death but large-scale evidence for the overarching importance of the growth–survival trade-off in driving tropical tree mortality
- …