6,262 research outputs found

    Modulational instability of spatially broadband nonlinear optical pulses in four-state atomic systems

    Full text link
    The modulational instability of broadband optical pulses in a four-state atomic system is investigated. In particular, starting from a recently derived generalized nonlinear Schr\"odinger equation, a wave-kinetic equation is derived. A comparison between coherent and random phase wave states is made. It is found that the spatial spectral broadening can contribute to the nonlinear stability of ultra-short optical pulses. In practical terms, this could be achieved by using random phase plate techniques.Comment: 9 pages, 3 figures, to appear in Phys. Rev.

    Massive "spin-2" theories in arbitrary D≥3D \ge 3 dimensions

    Full text link
    Here we show that in arbitrary dimensions D≥3D\ge 3 there are two families of second order Lagrangians describing massive "spin-2" particles via a nonsymmetric rank-2 tensor. They differ from the usual Fierz-Pauli theory in general. At zero mass one of the families is Weyl invariant. Such massless theory has no particle content in D=3D=3 and gives rise, via master action, to a dual higher order (in derivatives) description of massive spin-2 particles in D=3D=3 where both the second and the fourth order terms are Weyl invariant, contrary to the linearized New Massive Gravity. However, only the fourth order term is invariant under arbitrary antisymmetric shifts. Consequently, the antisymmetric part of the tensor e[μν]e_{[\mu\nu]} propagates at large momentum as 1/p21/p^2 instead of 1/p41/p^4. So, the same kind of obstacle for the renormalizability of the New Massive Gravity reappears in this nonsymmetric higher order description of massive spin-2 particles.Comment: 11 pages, 0 figure

    Laser scattering by density fluctuations of ultra-cold atoms in a magneto-optical trap

    Full text link
    We study the spectrum of density fluctuations in the ultra-cold gas of neutral atoms, confined in a magneto-optical trap. We determine the corresponding amplitude and spectra of laser light scattered by this medium. We derive an expression for the dynamical structure function, by using a test particle method. We propose to use the collective laser scattering as a diagnostic method for the microscopic properties of the ultra-cold matter. This will also allow us to check on the atomic correlations which are mediated by the collective mean field inside the gas.Comment: J. Phys. B (in press

    Massive spin-2 particles via embedment of the Fierz-Pauli equations of motion

    Full text link
    Here we obtain alternative descriptions of massive spin-2 particles by an embedding procedure of the Fierz-Pauli equations of motion. All models are free of ghosts at quadratic level although most of them are of higher order in derivatives. The models that we obtain can be nonlinearly completed in terms of a dynamic and a fixed metric. They include some f(R)f(R) massive gravities recently considered in the literature. In some cases there is an infrared (no derivative) modification of the Fierz-Pauli mass term altogether with higher order terms in derivatives. The analytic structure of the propagator of the corresponding free theories is not affected by the extra terms in the action as compared to the usual second order Fierz-Pauli theory.Comment: 13 page
    • …
    corecore