6 research outputs found
Community-based genetic study of Parkinson´s disease in Estonia.
OBJECTIVE: To examine the genetic variability of Estonian Parkinson´s disease (PD) patients using an ongoing epidemiological study in combination with a genetic analysis. METHODS: This study was a community-based genetic screening study of 189 PD patients and 158 age and sex matched controls screened for potential mutations in 9 PD genes using next-generation sequencing and multiplex ligation-dependent probe amplification method. Different clinimetric scales and questionnaires were used to examine PD patients and assess clinical characteristics and severity of the disease. RESULTS: The overall frequency of pathogenic PD-causing variants was 1.1% (2/189), any rare genetic variant was present in 21.2% (40/189) of the patients and in 8.2% (13/158) of the controls (p<0.05). Variants of unknown significance accounted for 10.6% (20/189). Frequency of any GBA variant among PD patients was 10.1% (19/189) and in controls 3.8% (6/158). The frequency of any GBA variant in PD compared to controls was significantly higher (p = 0.035; OR 2.82; CI 95% 1.05-8.87). Burden of rare variants was not different between patients and controls. Also, a novel GBA pathogenic variant p.E10X was detected. CONCLUSION: Among different genetic variants identified in Estonian PD patients, GBA variants are the most common while an overall pathogenic variant frequency was 1.1%
Defining the causes of sporadic Parkinson's disease in the global Parkinson's genetics program (GP2)
The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia
Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease
Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations
Recommended from our members
Defining the causes of sporadic Parkinson’s disease in the global Parkinson’s genetics program (GP2)
The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia
Recommended from our members
Multi-ancestry genome-wide association meta-analysis of Parkinson’s disease
Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations