113 research outputs found

    Anthropogenic and natural alterations of shallow groundwater temperatures

    Get PDF
    Shallow subsurface temperatures are influenced by various processes. In particular, the thermal environment under urban areas is profoundly changed by anthropogenic activities and under several cities a permanent increase in groundwater temperatures is observed, which is driven by site-specific factors. Also in rural areas atmospheric temperatures exhibit an increasing trend due to climatic changes and influence the development of groundwater temperatures in economically important aquifers

    Potential of low-temperature aquifer thermal energy storage (LT-ATES) in Germany

    Get PDF
    More than 30% of Germany’s final energy consumption currently results from thermal energy for heating and cooling in the building sector. One possibility to achieve significant greenhouse gas emission savings in space heating and cooling is the application of aquifer thermal energy storage (ATES) systems. Hence, this study maps the spatial technical potential of shallow low-temperature ATES systems in Germany. Important criteria for efficient ATES operation considered in this assessment encompass suitable hydrogeological conditions, such as aquifer productivity and groundwater flow velocity, and balanced space heating and cooling demands. The latter is approximated by the ratio of heating and cooling degree days, which is incorporated as a time-dependent criterion to also evaluate the impact of climate change on the ATES potential. The hydrogeological and climatic criteria are combined within a spatial analysis revealing that, regarding the upcoming decades, about 54% of the investigated German area are very well or well suitable for ATES applications, largely concentrating on three regions: the North German Basin, the Upper Rhine Graben and the South German Molasse Basin. Considering time-dependent climatic conditions, the very well or well suitable areas will increase by 13% for the time period 2071–2100. This is mostly caused by a large relative area increase of the very well suitable regions due to an increasing cooling demand in the future. The sensitivity of the very well and well suitable regions to the criteria weightings is relatively low. Accounting for existing water protection zones shows a reduction of the country-wide share of very well or well suitable areas by around 11%. Nevertheless, the newly created potential map reveals a huge potential for shallow low-temperature ATES systems in Germany

    Meeting the demand: geothermal heat supply rates for an urban quarter in Germany

    Get PDF
    Abstract Thermal energy for space heating and for domestic hot water use represents about a third of the overall energy demand in Germany. An alternative to non-renewable energy-based heat supply is the implementation of closed and open shallow geothermal systems, such as horizontal ground source heat pump systems, vertical ground source heat pump (vGSHP) systems and groundwater heat pump systems. Based on existing regulations and local hydrogeological conditions, the optimal site-specific system for heat supply has to be identified. In the presented technical feasibility study, various analytical solutions are tested for an urban quarter before and after building refurbishment. Geothermal heat supply rates are evaluated by providing information on the optimal system and the specific shortcomings. Our results show that standard vGSHP systems are even applicable in older and non-refurbished residential areas with a high heat demand using a borehole heat exchanger with a length of 100 m or in conjunction with multiple boreholes. After refurbishment, all studied shallow geothermal systems are able to cover the lowered heat demand. The presented analysis also demonstrates that ideally, various technological variants of geothermal systems should be evaluated for finding the optimal solution for existing, refurbished and newly developed residential areas

    Observed groundwater temperature response to recent climate change

    Get PDF
    Climate change is known to have a considerable influence on many components of the hydrological cycle. Yet, the implications for groundwater temperature, as an important driver for groundwater quality, thermal use and storage, are not yet comprehensively understood. Furthermore, few studies have examined the implications of climate-change-induced groundwater temperature rise for groundwater-dependent ecosystems. Here, we examine the coupling of atmospheric and groundwater warming by employing stochastic and deterministic models. Firstly, several decades of temperature time series are statistically analyzed with regard to climate regime shifts (CRSs) in the long-term mean. The observed increases in shallow groundwater temperatures can be associated with preceding positive shifts in regional surface air temperatures, which are in turn linked to global air temperature changes. The temperature data are also analyzed with an analytical solution to the conduction-advection heat transfer equation to investigate how subsurface heat transfer processes control the propagation of the surface temperature signals into the subsurface. In three of the four monitoring wells, the predicted groundwater temperature increases driven by the regime shifts at the surface boundary condition generally concur with the observed groundwater temperature trends. Due to complex interactions at the ground surface and the heat capacity of the unsaturated zone, the thermal signals from distinct changes in air temperature are damped and delayed in the subsurface, causing a more gradual increase in groundwater temperatures. These signals can have a significant impact on large-scale groundwater temperatures in shallow and economically important aquifers. These findings demonstrate that shallow groundwater temperatures have responded rapidly to recent climate change and thus provide insight into the vulnerability of aquifers and groundwater-dependent ecosystems to future climate change

    Observed groundwater temperature response to recent climate change

    Get PDF
    Climate change is known to have a considerable influence on many components of the hydrological cycle. Yet, the implications for groundwater temperature, as an important driver for groundwater quality, thermal use and storage, are not yet comprehensively understood. Furthermore, few studies have examined the implications of climate-change-induced groundwater temperature rise for groundwater-dependent ecosystems. Here, we examine the coupling of atmospheric and groundwater warming by employing stochastic and deterministic models. Firstly, several decades of temperature time series are statistically analyzed with regard to climate regime shifts (CRSs) in the long-term mean. The observed increases in shallow groundwater temperatures can be associated with preceding positive shifts in regional surface air temperatures, which are in turn linked to global air temperature changes. The temperature data are also analyzed with an analytical solution to the conduction–advection heat transfer equation to investigate how subsurface heat transfer processes control the propagation of the surface temperature signals into the subsurface. In three of the four monitoring wells, the predicted groundwater temperature increases driven by the regime shifts at the surface boundary condition generally concur with the observed groundwater temperature trends. Due to complex interactions at the ground surface and the heat capacity of the unsaturated zone, the thermal signals from distinct changes in air temperature are damped and delayed in the subsurface, causing a more gradual increase in groundwater temperatures. These signals can have a significant impact on large-scale groundwater temperatures in shallow and economically important aquifers. These findings demonstrate that shallow groundwater temperatures have responded rapidly to recent climate change and thus provide insight into the vulnerability of aquifers and groundwater-dependent ecosystems to future climate change

    Shallow subsurface heat recycling is a sustainable global space heating alternative

    Get PDF
    Despite the global interest in green energy alternatives, little attention has focused on the large-scale viability of recycling the ground heat accumulated due to urbanization, industrialization and climate change. Here we show this theoretical heat potential at a multi-continental scale by first leveraging datasets of groundwater temperature and lithology to assess the distribution of subsurface thermal pollution. We then evaluate subsurface heat recycling for three scenarios: a status quo scenario representing present-day accumulated heat, a recycled scenario with ground temperatures returned to background values, and a climate change scenario representing projected warming impacts. Our analyses reveal that over 50% of sites show recyclable underground heat pollution in the status quo, 25% of locations would be feasible for long-term heat recycling for the recycled scenario, and at least 83% for the climate change scenario. Results highlight that subsurface heat recycling warrants consideration in the move to a low-carbon economy in a warmer world

    Groundwater temperature anomalies in Central Europe

    Get PDF
    As groundwater is competitively used for drinking, irrigation, industrial and geothermal applications, the focus on elevated groundwater temperature (GWT) affecting the sustainable use of this resource increases. Hence, in this study GWT anomalies and their heat sources are identified. The anthropogenic heat intensity (AHI), defined as the difference between GWT at the well location and the median of surrounding rural background GWTs, is evaluated in over 10 000 wells in ten European countries. Wells within the upper three percentiles of the AHI are investigated for each of the three major land cover classes (natural, agricultural and artificial). Extreme GWTs ranging between 25 °C and 47 °C are attributed to natural hot springs. In contrast, AHIs from 3 to 10 K for both natural and agricultural surfaces are due to anthropogenic sources such as landfills, wastewater treatment plants or mining. Two-thirds of all anomalies beneath artificial surfaces have an AHI > 6 K and are related to underground car parks, heated basements and district heating systems. In some wells, the GWT exceeds current threshold values for open geothermal systems. Consequently, a holistic management of groundwater, addressing a multitude of different heat sources, is required to balance the conflict between groundwater quality for drinking and groundwater as an energy source or storage media for geothermal systems

    Groundwater fauna in an urban area: natural or affected?

    Get PDF
    In Germany, 70 % of the drinking water demand is met by groundwater, for which the quality is the product of multiple physical–chemical and biological processes. As healthy groundwater ecosystems help to provide clean drinking water, it is necessary to assess their ecological conditions. This is particularly true for densely populated urban areas, where faunistic groundwater investigations are still scarce. The aim of this study is, therefore, to provide a first assessment of the groundwater fauna in an urban area. Thus, we examine the ecological status of an anthropogenically influenced aquifer by analysing fauna in 39 groundwater monitoring wells in the city of Karlsruhe (Germany). For classification, we apply the groundwater ecosystem status index (GESI), in which a threshold of more than 70 % of crustaceans and less than 20 % of oligochaetes serves as an indication for very good and good ecological conditions. Our study reveals that only 35 % of the wells in the residential, commercial and industrial areas and 50 % of wells in the forested area fulfil these criteria. However, the study did not find clear spatial patterns with respect to land use and other anthropogenic impacts, in particular with respect to groundwater temperature. Nevertheless, there are noticeable differences in the spatial distribution of species in combination with abiotic groundwater characteristics in groundwater of the different areas of the city, which indicate that a more comprehensive assessment is required to evaluate the groundwater ecological status in more detail. In particular, more indicators, such as groundwater temperature, indicator species, delineation of site-specific characteristics and natural reference conditions should be considered
    • …
    corecore