16 research outputs found

    Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny

    No full text
    The increased amount of data produced by large genome sequencing projects allows scientists to carry out important syntenic studies to a great extent. Detailed genetic maps and entirely or partially sequenced genomes are compared, and macro- and microsyntenic relations can be determined for different species. In our study, the syntenic relationships between key legume plants and two model plants, Arabidopsis thaliana and Populus trichocarpa were investigated. The comparison of the map position of 172 gene-based Medicago sativa markers to the organization of homologous A. thaliana genes could not identify any sign of macrosynteny between the two genomes. A 276 kb long section of chromosome 5 of the model legume Medicago truncatula was used to investigate potential microsynteny with the other legume Lotus japonicus, as well as with Arabidopsis and Populus. Besides the overall correlation found between the legume plants, the comparison revealed several microsyntenic regions in the two more distant plants with significant resemblance. Despite the large phylogenetic distance, clear microsyntenic regions between Medicago and Arabidopsis or Populus were detected unraveling new intragenomic evolutionary relations in Arabidopsis

    Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris

    No full text
    The first predominantly gene-based genetic linkage map of lentil (Lens culinaris ssp. culinaris) was constructed using an F5 population developed from a cross between the cultivars Digger (ILL5722) and Northfield (ILL5588) using 79 intron-targeted amplified polymorphic (ITAP) and 18 genomic simple sequence repeat (SSR) markers. Linkage analysis revealed seven linkage groups (LGs) comprised of 5–25 markers that varied in length from 80.2 to 274.6 cM. The genome map spanned a total length of 928.4 cM. Clear evidence of a simple and direct macrosyntenic relationship between lentil and Medicago truncatula was observed. Sixty-six out of the 71 gene-based markers, which were previously assigned to M. truncatula genetic and physical maps, were found in regions syntenic between the Lens c. ssp. culinaris and M. truncatula genomes. However, there was evidence of moderate chromosomal rearrangements which may account for the difference in chromosome numbers between these two legume species. Eighteen common SSR markers were used to connect the current map with the most comprehensive and recent map that exists for lentil, providing the syntenic context of four important domestication traits. The composite map presented, anchored with orthologous markers mapped in M. truncatula, provides a strong foundation for the future use of genomic and genetic information in lentil genetic analysis and breeding
    corecore