120 research outputs found

    A multi-scale filament extraction method: getfilaments

    Get PDF
    Far-infrared imaging surveys of Galactic star-forming regions with Herschel have shown that a substantial part of the cold interstellar medium appears as a fascinating web of omnipresent filamentary structures. This highly anisotropic ingredient of the interstellar material further complicates the difficult problem of the systematic detection and measurement of dense cores in the strongly variable but (relatively) isotropic backgrounds. Observational evidence that stars form in dense filaments creates severe problems for automated source extraction methods that must reliably distinguish sources not only from fluctuating backgrounds and noise, but also from the filamentary structures. A previous paper presented the multi-scale, multi-wavelength source extraction method getsources based on a fine spatial scale decomposition and filtering of irrelevant scales from images. In this paper, a multi-scale, multi-wavelength filament extraction method getfilaments is presented that solves this problem, substantially improving the robustness of source extraction with getsources in filamentary backgrounds. The main difference is that the filaments extracted by getfilaments are now subtracted by getsources from detection images during source extraction, greatly reducing the chances of contaminating catalogs with spurious sources. The intimate physical relationship between forming stars and filaments seen in Herschel observations demands that accurate filament extraction methods must remove the contribution of sources and that accurate source extraction methods must be able to remove underlying filamentary structures. Source extraction with getsources now provides researchers also with clean images of filaments, free of sources, noise, and isotropic backgrounds.Comment: 15 pages, 19 figures, to be published in Astronomy & Astrophysics; language polished for better readabilit

    The ISO-LWS map of the Serpens cloud core. II. The line spectra

    Get PDF
    We present spectrophotometric ISO imaging with the LWS and the CAM-CVF of the Serpens molecular cloud core. The LWS map is centred on the far infrared and submillimetre source SMM1 and its size is 8' x 8'. The fine structure line emission in [OI] and [CII] is extended and can be successfully modelled to originate in a PDR with G_0 = 15 and n(H2) about 10^4 - 10^5 cm^-3. Extended emission is also observed in the rotational line emission of H2O and high-J CO. However, lack of sufficient angular resolution prevents us from excluding the possibility that the emssion regions of these lines are point like, which could be linked to the embedded objects SMM9 and SMM4. Toward the Class0 source SMM1, the LWS observations reveal, in addition to fine structure line emission, a rich spectrum of molecular lines. The sub-thermally excited and optically thick CO, H2O and OH lines are tracing an about 10^3 AU source with temperatures higher than 300 K and densities above 10^6 cm^-3. We show that geometry is of concern for the correct interpretation of the data and based on 2D-radiative transfer modelling of the disk/torus around SMM1, which successfully reproduces the entire observed SED and the observed line profiles of CO isotopomers, we can exclude the disk to be the source of the LWS-molecular line emission. The CAM-CVF permits us to see a region of rotational H2 emission. This H2 gas has a temperature of 10^3 K, which suggests that the heating of the gas is achieved through relatively slow shocks. Although we are not able to establish any firm conclusion regarding the detailed nature of the shock waves, our observations of the molecular line emission from SMM1 can be explainable in terms of an admixture of J-shocks and of C-shocks.Comment: 20 pages, 20 figures, accepted for publication in A&

    Dissecting Massive YSOs with Mid-Infrared Interferometry

    Full text link
    The very inner structure of massive YSOs is difficult to trace. With conventional observational methods we often identify structures still several hundreds of AU in size. But we also need information about the innermost regions where the actual mass transfer onto the forming high-mass star occurs. An innovative way to probe these scales is to utilise mid-infrared interferometry. Here, we present first results of our MIDI GTO programme at the VLTI. We observed 10 well-known massive YSOs down to scales of 20 mas. We clearly resolve these objects which results in low visibilities and sizes in the order of 30 - 50 mas. Thus, with MIDI we can for the first time quantify the extent of the thermal emission from the warm circumstellar dust and thus calibrate existing concepts regarding the compactness of such emission in the pre-UCHII region phase. Special emphasis will be given to the BN-type object M8E-IR where our modelling is most advanced and where there is indirect evidence for a strongly bloated central star.Comment: 8 pages, 6 figures, proceedings contribution for the conference "Massive Star Formation: Observations confront Theory", held in September 2007 in Heidelberg, Germany; to appear in ASP Conf. Ser. 387, H. Beuther et al. (eds.

    Mid-infrared interferometry of massive young stellar objects

    Full text link
    The very inner structure of massive young stellar objects (YSOs) is difficult to trace. With conventional observational methods we identify structures still several hundreds of AU in size. However, the (proto-)stellar growth takes place at the innermost regions (<100 AU) where the actual mass transfer onto the forming high-mass star occurs. We present results from our programme toward massive YSOs at the VLTI, utilising the two-element interferometer MIDI. To date, we observed 10 well-known massive YSOs down to scales of 20 mas (typically corresponding to 20 - 40 AU for our targets) in the 8-13 micron region. We clearly resolve these objects which results in low visibilities and sizes in the order of 30-50 mas. For two objects, we show results of our modelling. We demonstrate that the MIDI data can reveal decisive structure information for massive YSOs. They are often pivotal in order to resolve ambiguities still immanent in model parameters derived from sole SED fitting.Comment: 6 pages, 5 figures, necessary style files iopams.sty, jpconf11.clo, and jpconf.cls included; contribution for the conference "The Universe under the Microscope" (AHAR 2008), held in Bad Honnef (Germany) in April 2008, to be published in Journal of Physics: Conference Series by Institute of Physics Publishing, R. Schoedel, A. Eckart, S. Pfalzner, and E. Ros (eds.

    Strong dependence of the physical properties of cores on spatial resolution in observations and simulations

    Get PDF
    The angular resolution of a telescope is the primary observational parameter, along with the detector sensitivity in defining the quality of the observed images and of the subsequent scientific exploitation of the data. During the last decade in star formation research, many studies have targeted low-and high-mass star formation regions located at different distances, with different telescopes having specific angular resolution capabilities. However, no dedicated studies of the spatial resolution effects on the derived sizes and masses of the sources extracted from the observed images have been published. We present a systematic investigation of the angular resolution effects, with special attention being paid to the derived masses of sources as well as the shape of the resulting source mass functions (SMFs) and to their comparison with the initial stellar mass function. For our study, we chose two star-forming regions observed with Herschel, NGC 6334 and Aquila distant of 1750 and 460 pc respectively, and three (magneto)-hydrodynamical simulations, virtually positioned at the same distances as the observed regions. We built surface density maps with different angular resolutions by convolving the surface density images of the five regions to a set of four resolutions differing by a factor of two (9, 18, 36, and 72′′), which allowed us to cover spatial resolutions from 0.6 down to 0.02 pc. Then we detected and measured sources in each of the images at each resolution using getsf and we analysed the derived masses and sizes of the extracted sources. We find that the number of sources does not converge from 0.6 to â‰3 0.05 pc. It increases by about two when the angular resolution increases with a similar factor, which confirms that these large sources are cluster-forming clumps. Below 0.05 pc, the number of source still increases by about 1.3 when the angular resolution increases by two, suggesting that we are close to, but not yet at, convergence. In this regime of physical scales, we find that the measured sizes and masses of sources linearly depend on the angular resolution with no sign of convergence to a resolution-independent value, implying that these sources cannot be assimilated to isolated prestellar cores. The corresponding SMF peak also shifts with angular resolution, while the slope of the high-mass tail of the SMFs remains almost invariant. We propose that these angular resolution effects could be caused by the underestimated background of the unresolved sources observed against the sloping, hill-like backgrounds of the molecular clouds. If prestellar cores physically distinct from their background exist in cluster-forming molecular clouds, we conclude that their mass must be lower than reported so far in the literature. We discuss various implications for the studies of star formation: the problem of determining the mass reservoirs involved in the star-formation process; the inapplicability of the Gaussian beam deconvolution to infer source sizes; and the impossibility to determine the efficiency of the mass conversion from the cores to the stars. Our approach constitutes a simple convergence test to determine whether an observation is affected by angular resolution

    AZEuS: An Adaptive Zone Eulerian Scheme for Computational MHD

    Get PDF
    A new adaptive mesh refinement (AMR) version of the ZEUS-3D astrophysical magnetohydrodynamical (MHD) fluid code, AZEuS, is described. The AMR module in AZEuS has been completely adapted to the staggered mesh that characterises the ZEUS family of codes, on which scalar quantities are zone-centred and vector components are face-centred. In addition, for applications using static grids, it is necessary to use higher-order interpolations for prolongation to minimise the errors caused by waves crossing from a grid of one resolution to another. Finally, solutions to test problems in 1-, 2-, and 3-dimensions in both Cartesian and spherical coordinates are presented.Comment: 52 pages, 17 figures; Accepted for publication in ApJ

    IRC+10216 in Action: Present Episode of Intense Mass-Loss Reconstructed by Two-Dimensional Radiative Transfer Modeling

    Get PDF
    We present two-dimensional (2D) radiative transfer modeling of IRC+10216 at selected moments of its evolution in 1995-2001, which correspond to three epochs of our series of 8 near-infrared speckle images (Osterbart et al. 2000, Weigelt et al. 2002). The high-resolution images obtained over the last 5.4 years revealed the dynamic evolution of the subarcsecond dusty environment of IRC+10216 and our recent time-independent 2D radiative transfer modeling reconstructed its physical properties at the single epoch of January 1997 (Men'shchikov et al. 2001). Having documented the complex changes in the innermost bipolar shell of the carbon star, we incorporate the evolutionary constraints into our new modeling to understand the physical reasons for the observed changes. The new calculations imply that during the last 50 years, we have been witnessing an episode of a steadily increasing mass loss from the central star, from Mdot ~ 10^-5 Msun/yr to the rate of Mdot ~ 3x10^-4 Msun/yr in 2001. The rapid increase of the mass loss of IRC+10216 and continuing time-dependent dust formation and destruction caused the observed displacement of the initially faint components C and D and of the bright cavity A from the star which has almost disappeared in our images in 2001. Increasing dust optical depths are causing strong backwarming that leads to higher temperatures in the dust formation zone, displacing the latter outward with a velocity v_T ~ 27 km/s due to the evaporation of the recently formed dust grains. This shift of the dust density peak in the bipolar shell mimics a rapid radial expansion, whereas the actual outflow has probably a lower speed v < v_inf ~ 15 km/s. The model predicts that the star will remain obscured until Mdot starts to drop back to lower values in the dust formation zone.Comment: 10 pages, 6 figures, accepted by Astronomy and Astrophysics, also available at http://www.mpifr-bonn.mpg.de/div/ir-interferometry/publications.htm

    Mid-infrared interferometry of massive young stellar objects. I. VLTI and Subaru observations of the enigmatic object M8E-IR

    Get PDF
    [abridged] Our knowledge of the inner structure of embedded massive young stellar objects is still quite limited. We attempt here to overcome the spatial resolution limitations of conventional thermal infrared imaging. We employed mid-infrared interferometry using the MIDI instrument on the ESO/VLTI facility to investigate M8E-IR, a well-known massive young stellar object suspected of containing a circumstellar disk. Spectrally dispersed visibilities in the 8-13 micron range were obtained at seven interferometric baselines. We resolve the mid-infrared emission of M8E-IR and find typical sizes of the emission regions of the order of 30 milli-arcseconds (~45 AU). Radiative transfer simulations have been performed to interpret the data. The fitting of the spectral energy distribution, in combination with the measured visibilities, does not provide evidence for an extended circumstellar disk with sizes > 100 AU but requires the presence of an extended envelope. The data are not able to constrain the presence of a small-scale disk in addition to an envelope. In either case, the interferometry measurements indicate the existence of a strongly bloated, relatively cool central object, possibly tracing the recent accretion history of M8E-IR. In addition, we present 24.5 micron images that clearly distinguish between M8E-IR and the neighbouring ultracompact HII region and which show the cometary-shaped infrared morphology of the latter source. Our results show that IR interferometry, combined with radiative transfer modelling, can be a viable tool to reveal crucial structure information on embedded massive young stellar objects and to resolve ambiguities arising from fitting the SED.Comment: 7 pages, 5 figures, accepted for publication in A&A, new version after language editing, one important reference added, conclusions unchange
    • …
    corecore