2 research outputs found

    Molybdenum nanopillar arrays: Fabrication and engineering

    No full text
    We report on the fabrication of molybdenum (Mo) nanopillar (NP) arrays with NP diameters down to 75 nm by means of deep-reactive ion etching at cryogenic temperatures. A variable-thickness Mo metal layer sputtered onto a Si3N4/Si substrate makes possible NPs with different lengths in a controllable manner. We demonstrate how our fabrication strategy leads to tunable cross-sections with different geometries, including hexagonal, cylindrical, square and triangular shapes, by using electron beam lithography on hydrogen silsesquioxane negative tone resist. To ensure well-defined facets and surfaces, we employ deep-reactive ion etching in a gas mixture of SF6 and O2 at cryogenic temperatures in an inductively coupled plasma reactive ion etching (ICP-RIE) system. These results represent an attractive route towards the realization of high-density Mo NP arrays for applications from nanoelectronics to quantum sensing and hydrogen evolution reaction catalysis.QN/Conesa-Boj LabQN/Kavli Nanolab DelftBUS/Quantum Delf

    Single-Shot Fabrication of Semiconducting–Superconducting Nanowire Devices

    No full text
    Semiconducting–superconducting hybrids are vital components for the realization of high-performance nanoscale devices. In particular, semiconducting–superconducting nanowires attract widespread interest owing to the possible presence of non-abelian Majorana zero modes, which are quasiparticles that hold promise for topological quantum computing. However, systematic search for Majoranas signatures is challenging because it requires reproducible hybrid devices and reliable fabrication methods. This work introduces a fabrication concept based on shadow walls that enables the in situ, selective, and consecutive depositions of superconductors and normal metals to form normal-superconducting junctions. Crucially, this method allows to realize devices in a single shot, eliminating fabrication steps after the synthesis of the fragile semiconductor/superconductor interface. At the atomic level, all investigated devices reveal a sharp and defect-free semiconducting–superconducting interface and, correspondingly, a hard induced superconducting gap resilient up to 2 T is measured electrically. While the cleanliness of the technique enables systematic studies of topological superconductivity in nanowires, it also allows for the synthesis of advanced nano-devices based on a wide range of material combinations and geometries while maintaining an exceptionally high interface quality.QCD/Veldhorst LabQRD/Kouwenhoven LabBUS/Quantum DelftQN/Kouwenhoven La
    corecore