2 research outputs found

    VAPR: Void Aware Pressure Routing for Underwater Sensor Networks

    Get PDF
    Abstract-Underwater mobile sensor networks have recently been proposed as a way to explore and observe the ocean, providing 4D (space and time) monitoring of underwater environments. We consider a specialized geographic routing problem called pressure routing that directs a packet to any sonobuoy on the surface based on depth information available from on-board pressure gauges. The main challenge of pressure routing in sparse underwater networks has been the efficient handling of 3D voids. In this respect, it was recently proven that the greedy stateless perimeter routing method, very popular in 2D networks, cannot be extended to void recovery in 3D networks. Available heuristics for 3D void recovery require expensive flooding. In this paper, we propose a Void Aware Pressure Routing (VAPR) protocol that uses sequence number, hop count and depth information embedded in periodic beacons to set up next-hop direction and to build a directional trail to the closest sonobuoy. Using this trail, opportunistic directional forwarding can be efficiently performed even in the presence of voids. The contribution of this paper is two-fold: (1) a robust soft-state routing protocol that supports opportunistic directional forwarding; and (2) a new framework to attain loop freedom in static and mobile underwater networks to guarantee packet delivery. Extensive simulation results show that VAPR outperforms existing solutions

    Designing an Adaptive Acoustic Modem for Underwater Sensor Networks

    Get PDF
    Abstract-There is a growing interest in using underwater networked systems for oceanographic applications. These networks often rely on acoustic communication, which poses a number of challenges for reliable data transmission. The underwater acoustic channel is highly variable; each link can experience a vastly conditions, which change according to environmental factors as well as the locations of the communicating nodes. This makes it difficult to ensure reliable communication. Furthermore, due to the high transmit power, the energy consumed in transmitting data is substantial which is exacerbated at lower data rates. The main challenge that we address in this article is how to build a system that provides reliable and energy efficient communication in underwater sensor networks. To this end, we propose an adaptive underwater acoustic modem which changes its parameters according to the situation. We present the design of such a modem and provide supporting results from simulations and experiments
    corecore