2,099 research outputs found

    Wiring a periscope--ocelli, retinula axons, visual neuropils and the ancestrality of sea spiders.

    Get PDF
    The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a 'periscope' or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon "pseudoinverted" retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora) and Limulus polyphemus (Xiphosura). This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have 'looked' like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes

    Practising Aspect Change

    Get PDF
    Sehen ist eine vermeintlich objektive Form der Wahrnehmung. Allerdings sieht der Mensch immer nur einzelne Aspekte eines Ganzen und deutet diese – gedanklich oder mit Worten – auf eine subjektive Weise. Ziel des vorgestellten Projekts ist es, Sehens- und Benennungsgewohnheiten bewusst zu machen und zu durchbrechen.Seeing is a supposedly objective form of perception. However, people only ever see individual aspects of a whole and interpret them – menatlly or in words – in a subjective way. The aim of the project presented here is to make people aware of their habits of seeing and naming, and to break through them

    Looking like Limulus? - Retinula axons and visual neuropils of the median and lateral eyes of scorpions

    Get PDF
    Background: Despite ongoing interest in the neurophysiology of visual systems in scorpions, aspects of their neuroanatomy have received little attention. Lately sets of neuroanatomical characters have contributed important arguments to the discussion of arthropod ground patterns and phylogeny. In various attempts to reconstruct phylogeny (from morphological, morphological + molecular, or molecular data) scorpions were placed either as basalmost Arachnida, or within Arachnida with changing sister-group relationships, or grouped with the extinct Eurypterida and Xiphosura inside the Merostomata. Thus, the position of scorpions is a key to understanding chelicerate evolution. To shed more light on this, the present study for the first time combines various techniques (Cobalt fills, DiI / DiO labelling, osmium-ethyl gallate procedure, and AMIRA 3D-reconstruction) to explore central projections and visual neuropils of median and lateral eyes in Euscorpius italicus (Herbst, 1800) and E. hadzii Di Caporiacco, 1950. Results: Scorpion median eye retinula cells are linked to a first and a second visual neuropil, while some fibres additionally connect the median eyes with the arcuate body. The lateral eye retinula cells are linked to a first and a second visual neuropil as well, with the second neuropil being partly shared by projections from both eyes. Conclusions: Comparing these results to previous studies on the visual systems of scorpions and other chelicerates, we found striking similarities to the innervation pattern in Limulus polyphemus for both median and lateral eyes. This supports from a visual system point of view at least a phylogenetically basal position of Scorpiones in Arachnida, or even a close relationship to Xiphosura. In addition, we propose a ground pattern for the central projections of chelicerate median eyes

    Dissecting a neuron network: FIB-SEM-based 3D-reconstruction of the visual neuropils in the sea spider Achelia langi (Dohrn, 1881) (Pycnogonida)

    Get PDF
    Background: The research field of connectomics arose just recently with the development of new three-dimensional- electron microscopy (EM) techniques and increasing computing power. So far, only a few model species (for example, mouse, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster) have been studied using this approach. Here, we present a first attempt to expand this circle to include pycnogonids, which hold a key position for the understanding of arthropod evolution. The visual neuropils in Achelia langi are studied using a focused ion beam-scanning electron microscope (FIB-SEM) crossbeam-workstation, and a three-dimensional serial reconstruction of the connectome is presented. Results: The two eyes of each hemisphere of the sea spider's eye tubercle are connected to a first and a second visual neuropil. The first visual neuropil is subdivided in two hemineuropils, each responsible for one eye and stratified into three layers. Six different neuron types postsynaptic to the retinula (R-cells) axons are characterized by their morphology: five types of descending unipolar neurons and one type of ascending neurons. These cell types are also identified by Golgi impregnations. Mapping of all identifiable chemical synapses indicates that the descending unipolar neurons are postsynaptic to the R-cells and, hence, are second-order neurons. The ascending neurons are predominantly presynaptic and sometimes postsynaptic to the R-cells and may play a feedback role. Conclusions: Comparing these results with the compound eye visual system of crustaceans and insects - the only arthropod visual system studied so far in such detail - we found striking similarities in the morphology and synaptic organization of the different neuron types. Hence, the visual system of pycnogonids shows features of both chelicerate median and mandibulate lateral eyes

    The visual system of harvestmen (Opiliones, Arachnida, Chelicerata) - a re-examination

    Get PDF
    Background: The visual systems in chelicerates are poorly understood, even though they show strong variation in eye and visual neuropil architecture, thus may provide valuable insights for the understanding of chelicerate phylogeny and eye evolution. Comparable morphological characters are desperately sought for reconstructions of the phylogeny of Chelicerata, especially with respect to Arachnida. So far, reliable data exist only for Pycnogonida, Xiphosura, Scorpiones, and Araneae. The few earlier studies of the organisation of the visual system in harvestmen are contradictory concerning the number, morphology, and position of the visual neuropils. Results: We undertook a descriptive and comparative analysis of the neuroanatomy of the visual system in several phalangid harvestmen species. Various traditional and modern methods were used that allow comparisons with previous results (cobalt fills, Dil/DiO labelling, osmium ethyl gallate procedure, and TEM). The R-cells (photoreceptor and arhabdomeric cells) in the eyes of Opiliones are linked to a first and a second visual neuropil. The first visual neuropil receives input from all R-cell axons, in the second only few R-cells terminate in the distal part. Hence, the second visual neuropil is subdivided in a part with direct R-cell input and a part without. The arcuate body is located in a subsequent position with direct contact to the second visual neuropil. Conclusions: This re-examination comes to conclusions different from those of all previous studies. The visual system of phalangid Opiliones occupies an intermediate position between Pycnogonida, Xiphosura, and Scorpiones on the one side, and Araneae on the other side. The projection of the R-cells is similar to that in the former grouping, the general neuropil arrangement to that in the latter taxon. However, more research on the visual systems in other chelicerate orders is needed in order to draw inferences on phylogeny or eye evolution

    Methodology on Quantification of Sonication Duration for Safe Application of MR Guided Focused Ultrasound for Liver Tumour Ablation

    Get PDF
    Background and objective Magnetic Resonance Guided Focused Ultrasound (MRgFUS) for liver tumour ablation is a challenging task due to motion caused by breathing and occlusion due the ribcage between the transducer and the tumour. To overcome these challenges, a novel system for liver tumour ablation during free breathing has been designed. Methods The novel TRANS-FUSIMO Treatment System (TTS, EUFP7) interacts with a Magnetic Resonance (MR) scanner and a focused ultrasound transducer to sonicate to a moving target in liver. To meet the requirements of ISO 13485; a quality management system for medical device design, the system needs to be tested for certain process parameters. The duration of sonication and, the delay after the sonication button is activated, are among the parameters that need to be quantified for efficient and safe ablation of tumour tissue. A novel methodology is developed to quantify these process parameters. A computerised scope is programmed in LabVIEW to collect data via hydrophone; where the coordinates of fiber-optic sensor assembly was fed into the TRANS-FUSIMO treatment software via Magnetic Resonance Imaging (MRI) to sonicate to the tip of the sensor, which is synchronised with the clock of the scope, embedded in a degassed water tank via sensor assembly holder. The sonications were executed for 50 W, 100 W, 150 W for 10 s to quantify the actual sonication duration and the delay after the emergency stop by two independent operators for thirty times. The deviation of the system from the predefined specs was calculated. Student's-T test was used to investigate the user dependency. Results The duration of sonication and the delay after the sonication were quantified successfully with the developed method. TTS can sonicate with a maximum deviation of 0.16 s (Std 0.32) from the planned duration and with a delay of 14 ms (Std 0.14) for the emergency stop. Student's T tests indicate that the results do not depend on operators (p > .05). Conclusion The evidence obtained via this protocol is crucial for translation- of-research into the clinics for safe application of MRgFUS. The developed protocol could be used for system maintenance in compliance with quality systems in clinics for daily quality assurance routines

    Dissecting a neuron network: FIB-SEM-based 3D-reconstruction of the visual neuropils in the sea spider Achelia langi (Dohrn, 1881) (Pycnogonida)

    Get PDF
    Background: The research field of connectomics arose just recently with the development of new three-dimensional- electron microscopy (EM) techniques and increasing computing power. So far, only a few model species (for example, mouse, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster) have been studied using this approach. Here, we present a first attempt to expand this circle to include pycnogonids, which hold a key position for the understanding of arthropod evolution. The visual neuropils in Achelia langi are studied using a focused ion beam-scanning electron microscope (FIB-SEM) crossbeam-workstation, and a three-dimensional serial reconstruction of the connectome is presented. Results: The two eyes of each hemisphere of the sea spider's eye tubercle are connected to a first and a second visual neuropil. The first visual neuropil is subdivided in two hemineuropils, each responsible for one eye and stratified into three layers. Six different neuron types postsynaptic to the retinula (R-cells) axons are characterized by their morphology: five types of descending unipolar neurons and one type of ascending neurons. These cell types are also identified by Golgi impregnations. Mapping of all identifiable chemical synapses indicates that the descending unipolar neurons are postsynaptic to the R-cells and, hence, are second-order neurons. The ascending neurons are predominantly presynaptic and sometimes postsynaptic to the R-cells and may play a feedback role. Conclusions: Comparing these results with the compound eye visual system of crustaceans and insects - the only arthropod visual system studied so far in such detail - we found striking similarities in the morphology and synaptic organization of the different neuron types. Hence, the visual system of pycnogonids shows features of both chelicerate median and mandibulate lateral eyes

    A technical demonstration of remote train operations using 5G mobile communications

    Get PDF
    The 5G-Reallabor in Braunschweig-Wolfsburg project has demonstrated the technical feasibility of Remote Train Operation (RTO) using 5G mobile communications with special consideration for any human-factor user requirements for the RTO workplace. During the demonstration, a rail vehicle was remotely controlled in two operating scenarios involving remote-controlled shunting and remote-controlled driving for the purpose of clearing an open track on infrastructure in Schlettau (Saxony, Germany) from an RTO workplace situated at the German Aerospace Center (DLR) in Braunschweig

    Feeding ecology in sea spiders (Arthropoda: Pycnogonida): what do we know?

    Get PDF
    Sea spiders (Pycnogonida) are a widespread and phylogenetically important group of marine arthropods. However, their biology remains understudied, and detailed information about their feeding ecology is difficult to find. Observations on pycnogonid feeding are scattered in the literature, often in older sources written in various languages, and have never been comprehensively summarized. Here we provide an overview of all information on feeding in pycnogonids that we have been able to find and review what is known on feeding specializations and preferences in the various pycnogonid taxa. We deduce general findings where possible and outline future steps necessary to gain a better understanding of the feeding ecology of one of the world's most bizarre animal taxa
    • …
    corecore