20 research outputs found
Recommended from our members
The Characterization of Upper-Room Ultraviolet Germicidal Irradiation in Inactivating Airborne Microorganisms
In this study, we explored the efficacy of upper-room ultraviolet germicidal irradiation (UVGI) in reducing the concentration of Serratia marcescens and Mycobacterium bovis bacille Calmette-Guérin (BCG) aerosols in enclosed places. We constructed a facility (4.5 m x 3 m x 2.9 m) in which both ceiling- and wall-mounted UV fixtures (UV output: 10W and 5W respectively) were installed. The use of ceiling- and wall-mounted UV fixtures (total UV output: 15W) without mixing fan reduced the concentration of S. marcescens aerosols by 46% (range: 22-80%) at 2 air changes per hour (ACH) and 53% (range: 40-68%) at 6 ACH. The use of ceiling- and wall-mounted UV fixtures with mixing fan increased the UV effectiveness in inactivating S. marcescens aerosols to 62% (range: 50-78%) at 2 ACH and to 86% (81-89%) at 6 ACH. For BCG aerosols, UV effectiveness in inactivating BCG aerosols at 6 ACH were 52% (range: 11-69%) by ceiling-mounted UV fixture only (total UV output: 10W) and 64% (51-83%) by both ceiling- and wall-mounted UV fixtures (total UV output: 15W). Our results indicated that the equivalent ventilation rate attributable to upper-room UVGI for BCG aerosols ranged from 1 ACH to 22 ACH for ceiling-mounted UV fixtures and from 6.4 ACH to 28.5 ACH for ceiling- and wall-mounted UV fixtures. Both generalized linear and generalized additive models were fitted to all our data. The regression results indicated that the number of UV fixtures, use of mixing fan, and air exchange rate significantly affected UV effectiveness (p < 0.01, 0.01, 0.01 respectively). However, the strain difference (S. marcescens vs. BCG) appeared less important in UV effectiveness (p = 0.26). Our results also indicated that UV effectiveness increased at higher temperature ((italic)p(/italic) < 0.01), lower dry-bulb temperature ((italic)p(/italic) = 0.21), and colder air from a supply grill located near the ceiling (p = 0.22)
Inactivation of Poxviruses by Upper-Room UVC Light in a Simulated Hospital Room Environment
In the event of a smallpox outbreak due to bioterrorism, delays in vaccination programs may lead to significant secondary transmission. In the early phases of such an outbreak, transmission of smallpox will take place especially in locations where infected persons may congregate, such as hospital emergency rooms. Air disinfection using upper-room 254 nm (UVC) light can lower the airborne concentrations of infective viruses in the lower part of the room, and thereby control the spread of airborne infections among room occupants without exposing occupants to a significant amount of UVC. Using vaccinia virus aerosols as a surrogate for smallpox we report on the effectiveness of air disinfection, via upper-room UVC light, under simulated real world conditions including the effects of convection, mechanical mixing, temperature and relative humidity. In decay experiments, upper-room UVC fixtures used with mixing by a conventional ceiling fan produced decreases in airborne virus concentrations that would require additional ventilation of more than 87 air changes per hour. Under steady state conditions the effective air changes per hour associated with upper-room UVC ranged from 18 to 1000. The surprisingly high end of the observed range resulted from the extreme susceptibility of vaccinia virus to UVC at low relative humidity and use of 4 UVC fixtures in a small room with efficient air mixing. Increasing the number of UVC fixtures or mechanical ventilation rates resulted in greater fractional reduction in virus aerosol and UVC effectiveness was higher in winter compared to summer for each scenario tested. These data demonstrate that upper-room UVC has the potential to greatly reduce exposure to susceptible viral aerosols. The greater survival at baseline and greater UVC susceptibility of vaccinia under winter conditions suggest that while risk from an aerosol attack with smallpox would be greatest in winter, protective measures using UVC may also be most efficient at this time. These data may also be relevant to influenza, which also has improved aerosol survival at low RH and somewhat similar sensitivity to UVC