650 research outputs found
Behavior of triangular shell element stiffness matrices associated with polyhedral deflection distributions
Stiffness matrices derived for triangular shell elements associated with polyhedral deflection distribution
Improving transient analysis technology for aircraft structures
Aircraft dynamic analyses are demanding of computer simulation capabilities. The modeling complexities of semi-monocoque construction, irregular geometry, high-performance materials, and high-accuracy analysis are present. At issue are the safety of the passengers and the integrity of the structure for a wide variety of flight-operating and emergency conditions. The technology which supports engineering of aircraft structures using computer simulation is examined. Available computer support is briefly described and improvement of accuracy and efficiency are recommended. Improved accuracy of simulation will lead to a more economical structure. Improved efficiency will result in lowering development time and expense
Structural Analysis and Matrix Interpetive System /SAMIS/ program Technical report, Feb. - Aug. 1966
Development of characteristic equations and error analysis for computer programs contained in structural analysis and matrix interpretive syste
Structural Analysis and Matrix Interpetive System /SAMIS/ program report Technical memorandum, Feb. 1963 - Dec. 1965
High speed digital computer program and data handling instructions for problem solving with structural analysis and interpretive syste
A plan for computer-assisted optimization of structures
Techniques for optimizing structural design by using computer
Manipulation errors in computer solution of critical size structural equations
Manipulation errors in computer solution of critical size structural equations using finite element metho
Structural analysis consultation using artificial intelligence
The primary goal of consultation is definition of the best strategy to deal with a structural engineering analysis objective. The knowledge base to meet the need is designed to identify the type of numerical analysis, the needed modeling detail, and specific analysis data required. Decisions are constructed on the basis of the data in the knowledge base - material behavior, relations between geometry and structural behavior, measures of the importance of time and temperature changes - and user supplied specifics characteristics of the spectrum of analysis types, the relation between accuracy and model detail on the structure, its mechanical loadings, and its temperature states. Existing software demonstrated the feasibility of the approach, encompassing the 36 analysis classes spanning nonlinear, temperature affected, incremental analyses which track the behavior of structural systems
Exchange of ejecta between Telesto and Calypso: Tadpoles, horseshoes, and passing orbits
We have numerically integrated the orbits of ejecta from Telesto and Calypso,
the two small Trojan companions of Saturn's major satellite Tethys. Ejecta were
launched with speeds comparable to or exceeding their parent's escape velocity,
consistent with impacts into regolith surfaces. We find that the fates of
ejecta fall into several distinct categories, depending on both the speed and
direction of launch.
The slowest ejecta follow sub-orbital trajectories and re-impact their source
moon in less than one day. Slightly faster debris barely escape their parent's
Hill sphere and are confined to tadpole orbits, librating about Tethys'
triangular Lagrange points L4 (leading, near Telesto) or L5 (trailing, near
Calypso) with nearly the same orbital semi-major axis as Tethys, Telesto, and
Calypso. These ejecta too eventually re-impact their source moon, but with a
median lifetime of a few dozen years. Those which re-impact within the first
ten years or so have lifetimes near integer multiples of 348.6 days (half the
tadpole period).
Still faster debris with azimuthal velocity components >~ 10 m/s enter
horseshoe orbits which enclose both L4 and L5 as well as L3, but which avoid
Tethys and its Hill sphere. These ejecta impact either Telesto or Calypso at
comparable rates, with median lifetimes of several thousand years. However,
they cannot reach Tethys itself; only the fastest ejecta, with azimuthal
velocities >~ 40 m/s, achieve "passing orbits" which are able to encounter
Tethys. Tethys accretes most of these ejecta within several years, but some 1 %
of them are scattered either inward to hit Enceladus or outward to strike
Dione, over timescales on the order of a few hundred years
Penetration depth for shallow impact cratering
We present data for the penetration of a variety of spheres, dropped from
rest, into a level non-cohesive granular medium. We improve upon our earlier
work [Uehara {\it et al.} Phys. Rev. Lett. {\bf 90}, 194301 (2003)] in three
regards. First, we explore the behavior vs sphere diameter and density more
systematically, by holding one of these parameters constant while varying the
other. Second, we prepare the granular medium more reproducibly and, third, we
measure the penetration depth more accurately. The new data support our
previous conclusion that the penetration depth is proportional to the 1/2 power
of sphere density, the 2/3 power of sphere diameter, and the 1/3 power of total
drop distance
Low-speed impact craters in loose granular media
We report on craters formed by balls dropped into dry, non-cohesive, granular
media. By explicit variation of ball density , diameter , and
drop height , the crater diameter is confirmed to scale as the 1/4 power of
the energy of the ball at impact:
. Against expectation, a different
scaling law is discovered for the crater depth:
. The scaling with properties of
the medium is also established. The crater depth has significance for granular
mechanics in that it relates to the stopping force on the ball.Comment: experiment; 4 pages, 3 figure
- …