13,066 research outputs found

    Fermi-Fermi Mixtures in the Strong Attraction Limit

    Full text link
    The phase diagrams of low density Fermi-Fermi mixtures with equal or unequal masses and equal or unequal populations are described at zero and finite temperatures in the strong attraction limit. In this limit, the Fermi-Fermi mixture can be described by a weakly interacting Bose-Fermi mixture, where the bosons correspond to Feshbach molecules and the fermions correspond to excess atoms. First, we discuss the three and four fermion scattering processes, and use the exact boson-fermion and boson-boson scattering lengths to generate the phase diagrams in terms of the underlying fermion-fermion scattering length. In three dimensions, in addition to the normal and uniform superfluid phases, we find two stable non-uniform states corresponding to (1) phase separation between pure unpaired (excess) and pure paired fermions (molecular bosons); and (2) phase separation between pure excess fermions and a mixture of excess fermions and molecular bosons. Lastly, we also discuss the effects of the trapping potential in the density profiles of condensed and non-condensed molecular bosons, and excess fermions at zero and finite temperatures, and discuss possible implications of our findings to experiments involving mixtures of ultracold fermions.Comment: 12 Pages, 6 Figures and 1 Tabl

    Two-species fermion mixtures with population imbalance

    Full text link
    We analyze the phase diagram of uniform superfluidity for two-species fermion mixtures from the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensation (BEC) limit as a function of the scattering parameter and population imbalance. We find at zero temperature that the phase diagram of population imbalance versus scattering parameter is asymmetric for unequal masses, having a larger stability region for uniform superfluidity when the lighter fermions are in excess. In addition, we find topological quantum phase transitions associated with the disappearance or appearance of momentum space regions of zero quasiparticle energies. Lastly, near the critical temperature, we derive the Ginzburg-Landau equation, and show that it describes a dilute mixture of composite bosons and unpaired fermions in the BEC limit.Comment: 4 pages with 3 figures, accepted version to PR

    Search for Associations Containing Young stars (SACY): Chemical tagging IC 2391 & the Argus association

    Full text link
    We explore the possible connection between the open cluster IC 2391 and the unbound Argus association identified by the SACY survey. In addition to common kinematics and ages between these two systems, here we explore their chemical abundance patterns to confirm if the two substructures shared a common origin. We carry out a homogenous high-resolution elemental abundance study of eight confirmed members of IC 2391 as well as six members of the Argus association using UVES spectra. We derive spectroscopic stellar parameters and abundances for Fe, Na, Mg, Al, Si, Ca, Ti, Cr, Ni and Ba. All stars in the open cluster and Argus association were found to share similar abundances with the scatter well within the uncertainties, where [Fe/H] = -0.04 +/-0.03 for cluster stars and [Fe/H] = -0.06 +/-0.05 for Argus stars. Effects of over-ionisation/excitation were seen for stars cooler than roughly 5200K as previously noted in the literature. Also, enhanced Ba abundances of around 0.6 dex were observed in both systems. The common ages, kinematics and chemical abundances strongly support that the Argus association stars originated from the open cluster IC 2391. Simple modeling of this system find this dissolution to be consistent with two-body interactions.Comment: 17 pages, 7 figs, accepted for publication in MNRA

    How Hertzian solitary waves interact with boundaries in a 1-D granular medium

    Full text link
    We perform measurements, numerical simulations, and quantitative comparisons with available theory on solitary wave propagation in a linear chain of beads without static preconstrain. By designing a nonintrusive force sensor to measure the impulse as it propagates along the chain, we study the solitary wave reflection at a wall. We show that the main features of solitary wave reflection depend on wall mechanical properties. Since previous studies on solitary waves have been performed at walls without these considerations, our experiment provides a more reliable tool to characterize solitary wave propagation. We find, for the first time, precise quantitative agreements.Comment: Proof corrections, ReVTeX, 11 pages, 3 eps (Focus and related papers on http://www.supmeca.fr/perso/jobs/

    Modos de distribuição de composto orgânico em viníferas.

    Get PDF
    O presente trabalho teve por objetivo avaliar o efeito da distribuição do composto orgânico sobre a produção e a composição do mosto da uva de videiras Cabernet Sauvignon.bitstream/item/48507/1/Comunicado-Tecnico-104.pd
    • …
    corecore