721 research outputs found
Peculiar Features of the Velocity Field of OB Associations and the Spiral Structure of the Galaxy
Some of the peculiar features of the periodic velocity-field structure for OB
associations can be explained by using the model of Roberts and Hausman (1984),
in which the behavior of a system of dense clouds is considered in a perturbed
potential. The absence of statistically significant variations in the azimuthal
velocity across the Carina arm, probably, results from its sharp increase
behind the shock front, which is easily blurred by distance errors. The
existence of a shock wave in the spiral arms and, at the same time, the
virtually free motion of OB associations in epicycles can be reconciled in the
model of particle clouds with a mean free path of 0.2-2 kpc. The velocity field
of OB associations exhibits two appreciable nonrandom deviations from an ideal
spiral pattern: a 0.5-kpc displacement of the Cygnus- and Carina-arm fragments
from one another and a weakening of the Perseus arm in quadrant III. However,
the identified fragments of the Carina, Cygnus, and Perseus arms do not belong
to any of the known types of spurs.Comment: 14 pages, 3 postscript figures, to be published in Astronomy Letter
Tangling clustering of inertial particles in stably stratified turbulence
We have predicted theoretically and detected in laboratory experiments a new
type of particle clustering (tangling clustering of inertial particles) in a
stably stratified turbulence with imposed mean vertical temperature gradient.
In this stratified turbulence a spatial distribution of the mean particle
number density is nonuniform due to the phenomenon of turbulent thermal
diffusion, that results in formation of a gradient of the mean particle number
density, \nabla N, and generation of fluctuations of the particle number
density by tangling of the gradient, \nabla N, by velocity fluctuations. The
mean temperature gradient, \nabla T, produces the temperature fluctuations by
tangling of the gradient, \nabla T, by velocity fluctuations. These
fluctuations increase the rate of formation of the particle clusters in small
scales. In the laboratory stratified turbulence this tangling clustering is
much more effective than a pure inertial clustering that has been observed in
isothermal turbulence. In particular, in our experiments in oscillating grid
isothermal turbulence in air without imposed mean temperature gradient, the
inertial clustering is very weak for solid particles with the diameter 10
microns and Reynolds numbers Re =250. Our theoretical predictions are in a good
agreement with the obtained experimental results.Comment: 16 pages, 4 figures, REVTEX4, revised versio
Spin-orbit interaction in three-dimensionally bounded semiconductor nanostructures
The structural inversion asymmetry-induced spin-orbit interaction of
conduction band electrons in zinc-blende and wurtzite semiconductor structures
is analysed allowing for a three-dimensional (3D) character of the external
electric field and variation of the chemical composition. The interaction,
taking into account all remote bands perturbatively, is presented with two
contributions: a heterointerface term and a term caused by the external
electric field. They have generally comparable strength and can be written in a
unified manner only for 2D systems, where they can partially cancel each other.
For quantum wires and dots composed of wurtzite semiconductors new terms
appear, absent in zinc-blende structures, which acquire the standard Rashba
form in 2D systems.Comment: 18 pages, 1 figur
Precision determination of band offsets in strained InGaAs/GaAs quantum wells by C-V-profiling and Schroedinger-Poisson self-consistent simulation
The results of measurements and numerical simulation of charge carrier
distribution and energy states in strained quantum wells In_xGa_{1-x}As/GaAs
(0.06 < x < 0.29) by C-V-profiling are presented. Precise values of conduction
band offsets for these pseudomorphic QWs have been obtained by means of
self-consistent solution of Schroedinger and Poisson equations and following
fitting to experimental data. For the conduction band offsets in strained
In_xGa_{1-x}As/GaAs - QWs the expression DE_C(x) = 0.814x - 0.21x^2 has been
obtained.Comment: 9 pages, 12 figures, RevTeX
Shift of fibril-forming ability of the designed alpha-helical coiled-coil peptides into the physiological pH region
Recently, we designed a short alpha-helical fibril-forming peptide (alphaFFP) that can form alpha-helical nanofibrils at acid pH. The non-physiological conditions of the fibril formation hamper biomedical application of alphaFFP. It was hypothesized that electrostatic repulsion between glutamic acid residues present at positions (g) of the alphaFFP coiled-coil sequence prevent the fibrillogenesis at neutral pH, while their protonation below pH 5.5 triggers axial growth of the fibril. To test this hypothesis, we synthesized alphaFFPs where all glutamic acid residues were substituted by glutamines or serines. The electron microscopy study confirmed that the modified alphaFFPs form nanofibrils in a wider range of pH (2.5-11). Circular dichroism spectroscopy, sedimentation, diffusion and differential scanning calorimetry showed that the fibrils are alpha-helical and have elongated and highly stable cooperative tertiary structures. This work leads to a better understanding of interactions that control the fibrillogenesis of the alphaFFPs and opens opportunities for their biomedical application
Digital receivers for low-frequency radio telescopes UTR-2, URAN, GURT
This paper describes digital radio astronomical receivers used for decameter
and meter wavelength observations. This paper describes digital radio
astronomical receivers used for decameter and meter wavelength observations.
Since 1998, digital receivers performing on-the-fly dynamic spectrum
calculations or waveform data recording without data loss have been used at the
UTR-2 radio telescope, the URAN VLBI system, and the GURT new generation radio
telescope. Here we detail these receivers developed for operation in the strong
interference environment that prevails in the decameter wavelength range. Data
collected with these receivers allowed us to discover numerous radio
astronomical objects and phenomena at low frequencies, a summary of which is
also presented.Comment: 24 pages, 15 figure
Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment
We develop theoretical basics of active experiments with two beams of acoustic waves, radiated by a ground-based sound generator. These beams are transformed into atmospheric acoustic gravity waves (AGWs), which have parameters that enable them to penetrate to the altitudes of the ionospheric E and F regions where they influence the electron concentration of the ionosphere. Acoustic waves are generated by the ground-based parametric sound generator (PSG) at the two close frequencies. The main idea of the experiment is to design the output parameters of the PSG to build a cascade scheme of nonlinear wave frequency downshift transformations to provide the necessary conditions for their vertical propagation and to enable penetration to ionospheric altitudes. The PSG generates sound waves (SWs) with frequencies f1 = 600 and f2 = 625 Hz and large amplitudes (100-420ms-1). Each of these waves is modulated with the frequency of 0.016 Hz. The novelty of the proposed analytical-numerical model is due to simultaneous accounting for nonlinearity, diffraction, losses, and dispersion and inclusion of the two-stage transformation (1) of the initial acoustic waves to the acoustic wave with the difference frequency Δf = f2 - f1 in the altitude ranges 0-0.1 km, in the strongly nonlinear regime, and (2) of the acoustic wave with the difference frequency to atmospheric acoustic gravity waves with the modulational frequency in the altitude ranges 0.1-20 km, which then reach the altitudes of the ionospheric E and F regions, in a practically linear regime. AGWs, nonlinearly transformed from the sound waves, launched by the two-frequency ground-based sound generator can increase the transparency of the ionosphere for the electromagnetic waves in HF (MHz) and VLF (kHz) ranges. The developed theoretical model can be used for interpreting an active experiment that includes the PSG impact on the atmosphere-ionosphere system, measurements of electromagnetic and acoustic fields, study of the variations in ionospheric transparency for the radio emissions from galactic radio sources, optical measurements, and the impact on atmospheric aerosols. The proposed approach can be useful for better understanding the mechanism of the acoustic channel of seismo-ionospheric coupling
- …