511 research outputs found
Valley-dependent Lorentz force and Aharonov-Bohm phase in strained graphene p-n junction
Veselago lens focusing in graphene p−n junction is promising for realizations of new generation electron optics devices. However, the effect of the strain-induced Aharonov-Bohm interference in a p−n junction has not been discussed before. We provide an experimentally feasible setup based on the Veselago lens in which the presence of strain can result in both the valley-dependent Lorentz force and Aharonov-Bohm interference. In particular, by employing the Green\u27s function and tight-binding methods, we study the strain induced by dislocations and line defects in a p−n junction and show how the resulting Aharonov-Bohm phase and interference can be detected. Furthermore, for a different strain configuration, e.g., corresponding to corrugated graphene, we find strong signatures of valley splitting induced by the fictitious magnetic field. Our proposal can be useful for mapping elastic deformations and defects, and for studying valley-dependent effects in graphene
Mass Spectrometry Based Molecular 3D-Cartography of Plant Metabolites
Plants play an essential part in global carbon fixing through photosynthesis and are the primary food and energy source for humans. Understanding them thoroughly is therefore of highest interest for humanity. Advances in DNA and RNA sequencing and in protein and metabolite analysis allow the systematic description of plant composition at the molecular level. With imaging mass spectrometry, we can now add a spatial level, typically in the micrometer-to-centimeter range, to their compositions, essential for a detailed molecular understanding. Here we present an LC-MS based approach for 3D plant imaging, which is scalable and allows the analysis of entire plants. We applied this approach in a case study to pepper and tomato plants. Together with MS/MS spectra library matching and spectral networking, this non-targeted workflow provides the highest sensitivity and selectivity for the molecular annotations and imaging of plants, laying the foundation for studies of plant metabolism and plant-environment interactions
Prioritizing Natural Product Diversity in a Collection of 146 Bacterial Strains Based on Growth and Extraction Protocols
In order to expedite the rapid and efficient discovery and isolation of novel specialized metabolites, while minimizing the waste of resources on rediscovery of known compounds, it is crucial to develop efficient approaches for strain prioritization, rapid dereplication, and the assessment of favored cultivation and extraction conditions. Herein we interrogated bacterial strains by systematically evaluating cultivation and extraction parameters with LC-MS/MS analysis and subsequent dereplication through the Global Natural Product Social Molecular Networking (GNPS) platform. The developed method is fast, requiring minimal time and sample material, and is compatible with high-throughput extract analysis, thereby streamlining strain prioritization and evaluation of culturing parameters. With this approach, we analyzed 146 marine Salinispora and Streptomyces strains that were grown and extracted using multiple different protocols. In total, 603 samples were analyzed, generating approximately 1.8 million mass spectra. We constructed a comprehensive molecular network and identified 15 molecular families of diverse natural products and their analogues. The size and breadth of this network shows statistically supported trends in molecular diversity when comparing growth and extraction conditions. The network provides an extensive survey of the biosynthetic capacity of the strain collection and a method to compare strains based on the variety and novelty of their metabolites. This approach allows us to quickly identify patterns in metabolite production that can be linked to taxonomy, culture conditions, and extraction methods, as well as informing the most valuable growth and extraction conditions
Recommended from our members
Molecular and Microbial Microenvironments in Chronically Diseased Lungs Associated with Cystic Fibrosis.
To visualize the personalized distributions of pathogens and chemical environments, including microbial metabolites, pharmaceuticals, and their metabolic products, within and between human lungs afflicted with cystic fibrosis (CF), we generated three-dimensional (3D) microbiome and metabolome maps of six explanted lungs from three cystic fibrosis patients. These 3D spatial maps revealed that the chemical environments differ between patients and within the lungs of each patient. Although the microbial ecosystems of the patients were defined by the dominant pathogen, their chemical diversity was not. Additionally, the chemical diversity between locales in the lungs of the same individual sometimes exceeded interindividual variation. Thus, the chemistry and microbiome of the explanted lungs appear to be not only personalized but also regiospecific. Previously undescribed analogs of microbial quinolones and antibiotic metabolites were also detected. Furthermore, mapping the chemical and microbial distributions allowed visualization of microbial community interactions, such as increased production of quorum sensing quinolones in locations where Pseudomonas was in contact with Staphylococcus and Granulicatella, consistent with in vitro observations of bacteria isolated from these patients. Visualization of microbe-metabolite associations within a host organ in early-stage CF disease in animal models will help elucidate the complex interplay between the presence of a given microbial structure, antibiotics, metabolism of antibiotics, microbial virulence factors, and host responses.IMPORTANCE Microbial infections are now recognized to be polymicrobial and personalized in nature. Comprehensive analysis and understanding of the factors underlying the polymicrobial and personalized nature of infections remain limited, especially in the context of the host. By visualizing microbiomes and metabolomes of diseased human lungs, we reveal how different the chemical environments are between hosts that are dominated by the same pathogen and how community interactions shape the chemical environment or vice versa. We highlight that three-dimensional organ mapping methods represent hypothesis-building tools that allow us to design mechanistic studies aimed at addressing microbial responses to other microbes, the host, and pharmaceutical drugs
Creating a 3D microbial and chemical snapshot of a human habitat
Kapono CA, Morton JT, Bouslimani A, et al. Creating a 3D microbial and chemical snapshot of a human habitat. Scientific Reports. 2018;8(1): 3669
Case Report : Supernormal Vascular Aging in Leningrad Siege Survivors
Age-related changes in the vascular system play an important role in the biological age and lifespan of a person and maybe affected from an early age onward. One of the indicators of changes in the vascular system is arterial wall stiffness and its main measure, i.e., carotid-femoral pulse wave velocity (cfPWV). We examined arterial wall stiffness in a sample of 305 Leningrad Siege survivors to assess how hunger and stressful conditions during fetal development and early childhood affected the state of the cardiovascular system at a later age and what factors may neutralize the negative impact sustained in early childhood. Here, we presented an evaluation of two unique patients with supernormal vascular aging (SUPERNOVA) phenotype from this cohort and described the details of congruence between hereditary resistance and practiced lifestyle yielding slower biological aging rate.Peer reviewe
Lugdunomycin, an Angucycline-Derived Molecule with Unprecedented Chemical Architecture
The angucyclines form the largest family of polycyclic aromatic polyketides, and have been studied extensively. Herein, we report the discovery of lugdunomycin, an angucycline-derived polyketide, produced by Streptomyces species QL37. Lugdunomycin has unique structural characteristics, including a heptacyclic ring system, a spiroatom, two all-carbon stereocenters, and a benzaza-[4,3,3]propellane motif. Considering the structural novelty, we propose that lugdunomycin represents a novel subclass of aromatic polyketides. Metabolomics, combined with MS-based molecular networking analysis of Streptomyces sp. QL37, elucidated 24 other rearranged and non-rearranged angucyclines, 11 of which were previously undescribed. A biosynthetic route for the lugdunomycin and limamycins is also proposed. This work demonstrates that revisiting well-known compound families and their producer strains still is a promising approach for drug discovery
Search for Chelyabinsk Meteorite Fragments in Chebarkul Lake Bottom (GPR and Magnetic Data), Journal of Telecommunications and Information Technology, 2017, nr 3
The paper summarizes experimental efforts of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) undertaken in search of the biggest part of Chelyabinsk meteorite in the bottom of lake Chebarkul, South Ural, Russia, and to estimate the ecological effects of its subsequent excavation
Formation of Amyloid-Like Fibrils by Y-Box Binding Protein 1 (YB-1) Is Mediated by Its Cold Shock Domain and Modulated by Disordered Terminal Domains
YB-1, a multifunctional DNA- and RNA-binding nucleocytoplasmic protein, is involved in the majority of DNA- and mRNA-dependent events in the cell. It consists of three structurally different domains: its central cold shock domain has the structure of a β-barrel, while the flanking domains are predicted to be intrinsically disordered. Recently, we showed that YB-1 is capable of forming elongated fibrils under high ionic strength conditions. Here we report that it is the cold shock domain that is responsible for formation of YB-1 fibrils, while the terminal domains differentially modulate this process depending on salt conditions. We demonstrate that YB-1 fibrils have amyloid-like features, including affinity for specific dyes and a typical X-ray diffraction pattern, and that in contrast to most of amyloids, they disassemble under nearly physiological conditions
Recommended from our members
Global chemical effects of the microbiome include new bile-acid conjugations
A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease. Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry. These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis
- …