3,040 research outputs found

    Ongoing Mass Transfer in the Interacting Galaxy Pair NGC 1409/10

    Full text link
    I present two-band HST STIS imaging, and WIYN spectral mapping, of ongoing mass transfer in the interacting galaxy pair NGC 1409/10 (where NGC 1410 is the Seyfert galaxy also catalogued as III Zw 55). Archival snapshot WFPC2 imaging from the survey by Malkan et al. showed a dust feature stretching between the galaxies, apparently being captured by NGC 1409. The new images allow estimates of the mass being transferred and rate of transfer. An absorption lane typically 0.25" (100 pc) wide with a representative optical depth tau_B = 0.2 cuts across the spiral structure of NGC 1410, crosses the 7-kpc projected space between the nuclei, wraps in front of and, at the limits of detection, behind NGC 1409, and becomes a denser (tau_B = 0.4) polar feature around the core of NGC 1409. Combination of extinction data in two passbands allows a crude three-dimensional recovery of the dust structure, supporting the front/back geometry derived from colors and extinction estimates. The whole feature contains of order 10610^6 solar masses in dust, implying about 2x10^7 solar masses of gas, requiring a mass transfer rate averaging ~1 solar mass per year unless we are particularly unlucky in viewing angle. Curiously, this demonstrable case of mass transfer seems to be independent of the occurrence of a Seyfert nucleus, since the Seyfert galaxy in this pair is the donor of the material. Likewise, the recipient shows no signs of recent star formation from incoming gas, although NGC 1410 has numerous luminous young star clusters and widespread H-alpha emission.Comment: 27 pages, 9 figures. Accepted for the Astronomical Journal, March 200

    A double coset ansatz for integrability in AdS/CFT

    Full text link
    We give a proof that the expected counting of strings attached to giant graviton branes in AdS_5 x S^5, as constrained by the Gauss Law, matches the dimension spanned by the expected dual operators in the gauge theory. The counting of string-brane configurations is formulated as a graph counting problem, which can be expressed as the number of points on a double coset involving permutation groups. Fourier transformation on the double coset suggests an ansatz for the diagonalization of the one-loop dilatation operator in this sector of strings attached to giant graviton branes. The ansatz agrees with and extends recent results which have found the dynamics of open string excitations of giants to be given by harmonic oscillators. We prove that it provides the conjectured diagonalization leading to harmonic oscillators.Comment: 33 pages, 3 figures; v2: references adde

    Conductance of 1D quantum wires with anomalous electron-wavefunction localization

    Full text link
    We study the statistics of the conductance gg through one-dimensional disordered systems where electron wavefunctions decay spatially as ψexp(λrα)|\psi| \sim \exp (-\lambda r^{\alpha}) for 0<α<10 <\alpha <1, λ\lambda being a constant. In contrast to the conventional Anderson localization where ψexp(λr)|\psi| \sim \exp (-\lambda r) and the conductance statistics is determined by a single parameter: the mean free path, here we show that when the wave function is anomalously localized (α<1\alpha <1) the full statistics of the conductance is determined by the average and the power α\alpha. Our theoretical predictions are verified numerically by using a random hopping tight-binding model at zero energy, where due to the presence of chiral symmetry in the lattice there exists anomalous localization; this case corresponds to the particular value α=1/2\alpha =1/2. To test our theory for other values of α\alpha, we introduce a statistical model for the random hopping in the tight binding Hamiltonian.Comment: 6 pages, 8 figures. Few changes in the presentation and references updated. Published in PRB, Phys. Rev. B 85, 235450 (2012

    Measurements and analysis of the upper critical field Hc2H_{c2} on an underdoped and overdoped La2xSrxCuO4La_{2-x}Sr_xCuO_4 compounds

    Full text link
    The upper critical field Hc2H_{c2} is one of the many non conventional properties of high-TcT_c cuprates. It is possible that the Hc2(T)H_{c2}(T) anomalies are due to the presence of inhomogeneities in the local charge carrier density ρ\rho of the CuO2CuO_2 planes. In order to study this point, we have prepared good quality samples of polycrystalline La2xSrxCuO4La_{2-x}Sr_xCuO_{4} using the wet-chemical method, which has demonstrated to produce samples with a better cation distribution. In particular, we have studied the temperature dependence of the second critical field, Hc2(T)H_{c2}(T), through the magnetization measurements on two samples with opposite average carrier concentration (ρm=x\rho_m=x) and nearly the same critical temperature, namely ρm=0.08\rho_m = 0.08 (underdoped) and ρm=0.25\rho_m = 0.25 (overdoped). The results close to TcT_c do not follow the usual Ginzburg-Landau theory and are interpreted by a theory which takes into account the influence of the inhomogeneities.Comment: Published versio

    Casimir-Polder interaction between an atom and a conducting wall in cosmic string spacetime

    Full text link
    The Casimir-Polder interaction potential is evaluated for a polarizable microparticle and a conducting wall in the geometry of a cosmic string perpendicular to the wall. The general case of the anisotropic polarizability tensor for the microparticle is considered. The corresponding force is a function of the wall-microparticle and cosmic string-microparticle distances. Depending on the orientation of the polarizability tensor principal axes the force can be either attractive or repulsive. The asymptotic behavior of the Casimir-Polder potential is investigated at large and small separations compared to the wavelength of the dominant atomic transitions. We show that the conical defect may be used to control the strength and the sign of the Casimir-Polder force.Comment: 17 pages, 3 figure

    Sistema de gestão de clientes: Manual do usuário.

    Get PDF
    bitstream/item/33621/1/documento-179.pd

    Resistivity study of the pseudogap phase for (Hg,Re) - 1223 superconductors

    Full text link
    The pseudogap phase above the critical temperature of high TcT_{c} superconductors (HTSC) presents different energy scales and it is currently a matter of intense study. The complexity of the HTSC normal state requires very accurate measurements with the purpose of distinguishing different types of phenomena. Here we have performed systematically studies through electrical resistivity (ρ\rho) measurements by several different current densities in order to obtain an optimal current for each sample. This approach allows to determine reliable values of the pseudogap temperature T(n)T^{*}(n), the layer coupling temperature between the superconductor layers TLD(n)T_{LD}(n), the fluctuation temperature Tscf(n)T_{scf}(n) and the critical temperature Tc(n)T_{c}(n) as function of the doping nn. The interpretation of these different temperature scales allows to characterize possible scenarios for the (Hg,Re) - 1223 normal state. This method, described in detail here, and used to derive the (Hg,Re)-1223 phase diagram is general and can be applied to any HTSC.Comment: 31 pages, 12 figures, Latex; 25 pages, LaTeX; 11 figures; rewrited section II and III; added 18 reference; rewrited title, added discussion sectio

    Sistemas de informação: manual do administrador.

    Get PDF
    bitstream/item/33585/1/documento-163.pd

    Sistema de gestão de projetos: manual do usuário.

    Get PDF
    bitstream/item/33588/1/documento-164.pd

    Phase Separation and the Phase Diagram in Cuprates Superconductors

    Full text link
    We show that the main features of the cuprates superconductors phase diagram can be derived considering the disorder as a key property of these materials. Our basic point is that the high pseudogap line is an onset of phase separation which generates compounds made up of regions with distinct doping levels. We calculate how this continuous temperature dependent phase separation process occurs in high critical temperature superconductors (HTSC) using the Cahn-Hilliard approach, originally applied to study alloys. Since the level of phase separation varies for different cuprates, it is possible that different systems with average doping level pm exhibit different degrees of charge and spin segregation. Calculations on inhomogeneous charge distributions in form of stripes in finite clusters performed by the Bogoliubov-deGennes superconducting approach yield good agreement to the pseudogap temperature T*(pm), the onset of local pairing amplitudes with phase locked and concomitantly, how they develop at low temperatures into the superconducting phase at Tc(pm) by percolation.Comment: 9 pages, 9 figures. Submitted to Phys. Rev.
    corecore