1,071 research outputs found
Chaperone-assisted translocation of a polymer through a nanopore
Using Langevin dynamics simulations, we investigate the dynamics of
chaperone-assisted translocation of a flexible polymer through a nanopore. We
find that increasing the binding energy between the chaperone and
the chain and the chaperone concentration can greatly improve the
translocation probability. Particularly, with increasing the chaperone
concentration a maximum translocation probability is observed for weak binding.
For a fixed chaperone concentration, the histogram of translocation time
has a transition from long-tailed distribution to Gaussian distribution with
increasing . rapidly decreases and then almost saturates with
increasing binding energy for short chain, however, it has a minimum for longer
chains at lower chaperone concentration. We also show that has a minimum
as a function of the chaperone concentration. For different , a
nonuniversal dependence of on the chain length is also observed.
These results can be interpreted by characteristic entropic effects for
flexible polymers induced by either crowding effect from high chaperone
concentration or the intersegmental binding for the high binding energy.Comment: 10 pages, to appear in J. Am. Chem. So
Anomalous Dynamics of Forced Translocation
We consider the passage of long polymers of length N through a hole in a
membrane. If the process is slow, it is in principle possible to focus on the
dynamics of the number of monomers s on one side of the membrane, assuming that
the two segments are in equilibrium. The dynamics of s(t) in such a limit would
be diffusive, with a mean translocation time scaling as N^2 in the absence of a
force, and proportional to N when a force is applied. We demonstrate that the
assumption of equilibrium must break down for sufficiently long polymers (more
easily when forced), and provide lower bounds for the translocation time by
comparison to unimpeded motion of the polymer. These lower bounds exceed the
time scales calculated on the basis of equilibrium, and point to anomalous
(sub-diffusive) character of translocation dynamics. This is explicitly
verified by numerical simulations of the unforced translocation of a
self-avoiding polymer. Forced translocation times are shown to strongly depend
on the method by which the force is applied. In particular, pulling the polymer
by the end leads to much longer times than when a chemical potential difference
is applied across the membrane. The bounds in these cases grow as N^2 and
N^{1+\nu}, respectively, where \nu is the exponent that relates the scaling of
the radius of gyration to N. Our simulations demonstrate that the actual
translocation times scale in the same manner as the bounds, although influenced
by strong finite size effects which persist even for the longest polymers that
we considered (N=512).Comment: 13 pages, RevTeX4, 16 eps figure
Dragging a polymer chain into a nanotube and subsequent release
We present a scaling theory and Monte Carlo (MC) simulation results for a
flexible polymer chain slowly dragged by one end into a nanotube. We also
describe the situation when the completely confined chain is released and
gradually leaves the tube. MC simulations were performed for a self-avoiding
lattice model with a biased chain growth algorithm, the pruned-enriched
Rosenbluth method. The nanotube is a long channel opened at one end and its
diameter is much smaller than the size of the polymer coil in solution. We
analyze the following characteristics as functions of the chain end position
inside the tube: the free energy of confinement, the average end-to-end
distance, the average number of imprisoned monomers, and the average stretching
of the confined part of the chain for various values of and for the number
of monomers in the chain, . We show that when the chain end is dragged by a
certain critical distance into the tube, the polymer undergoes a
first-order phase transition whereby the remaining free tail is abruptly sucked
into the tube. This is accompanied by jumps in the average size, the number of
imprisoned segments, and in the average stretching parameter. The critical
distance scales as . The transition takes place when
approximately 3/4 of the chain units are dragged into the tube. The theory
presented is based on constructing the Landau free energy as a function of an
order parameter that provides a complete description of equilibrium and
metastable states. We argue that if the trapped chain is released with all
monomers allowed to fluctuate, the reverse process in which the chain leaves
the confinement occurs smoothly without any jumps. Finally, we apply the theory
to estimate the lifetime of confined DNA in metastable states in nanotubes.Comment: 13pages, 14figure
Translocation of structured polynucleotides through nanopores
We investigate theoretically the translocation of structured RNA/DNA
molecules through narrow pores which allow single but not double strands to
pass. The unzipping of basepaired regions within the molecules presents
significant kinetic barriers for the translocation process. We show that this
circumstance may be exploited to determine the full basepairing pattern of
polynucleotides, including RNA pseudoknots. The crucial requirement is that the
translocation dynamics (i.e., the length of the translocated molecular segment)
needs to be recorded as a function of time with a spatial resolution of a few
nucleotides. This could be achieved, for instance, by applying a mechanical
driving force for translocation and recording force-extension curves (FEC's)
with a device such as an atomic force microscope or optical tweezers. Our
analysis suggests that with this added spatial resolution, nanopores could be
transformed into a powerful experimental tool to study the folding of nucleic
acids.Comment: 9 pages, 5 figure
Outcome of children with resistant and relapsed Hodgkin's disease.
During the period 1974-89, 169 children with Hodgkin's disease were treated in the Paediatric Oncology Units of the Royal Marsden and St Bartholomew's Hospitals. The overall actuarial survival for the whole group was 81% at 10 years. Thirty-five of the 169 children either did not achieve a complete remission or subsequently relapsed. The estimated actuarial survival from initial relapse or failure of primary treatment was 60% at 5 years and 45% at 10 years. Over half of the patients requiring salvage therapy had declared themselves within 2 years and only 3 relapses occurred more than 3 years from diagnosis. Very few patients remain disease free long term after failure of primary and initial salvage therapy. Patients relapsing within a year of diagnosis or not achieving a complete response to primary therapy and those with disseminated relapse had a poor response to salvage therapy. A significant subgroup of patients had prolonged survival despite multiple relapses. Neither initial histology nor stage affected survival from relapse although numbers in each subgroup were small
Traumatic Brain Injury Induces Alterations in Cortical Glutamate Uptake without a Reduction in Glutamate Transporter-1 Protein Expression
We hypothesize that the primary mechanism for removal of glutamate from the extracellular space is altered after traumatic brain injury (TBI). To evaluate this hypothesis, we initiated TBI in adult male rats using a 2.0 atm lateral fluid percussion injury (LFPI) model. In the ipsilateral cortex and hippocampus, we found no differences in expression of the primary glutamate transporter in the brain (GLT-1) 24 h after TBI. In contrast, we found a decrease in glutamate uptake in the cortex, but not the hippocampus, 24 h after injury. Because glutamate uptake is potently regulated by protein kinases, we assessed global serine-threonine protein kinase activity using a kinome array platform. Twenty-five kinome array peptide substrates were differentially phoshorylated between LFPI and controls in the cortex, whereas 19 peptide substrates were differentially phosphorylated in the hippocampus (fold change ≥ ± 1.15). We identified several kinases as likely to be involved in acute TBI, including protein kinase B (Akt) and protein kinase C (PKC), which are well-characterized modulators of GLT-1. Exploratory studies using an inhibitor of Akt suggest selective activation of kinases in LFPI versus controls. Ingenuity pathway analyses of implicated kinases from our network model found apoptosis and cell death pathways as top functions in acute LFPI. Taken together, our data suggest diminished activity of glutamate transporters in the prefrontal cortex, with no changes in protein expression of the primary glutamate transporter GLT-1, and global alterations in signaling networks that include serine-threonine kinases that are known modulators of glutamate transport activity
'VEEP' in children with Hodgkin's disease--a regimen to decrease late sequelae.
In an attempt to decrease the risk of second malignancies and future infertility in children with Hodgkin's disease (HD) while retaining acceptable remission rates, an anthracycline based regimen containing no alkylating agent has been devised. VEEP contains vincristine, epirubicin, etoposide and prednisolone given at 3 weekly intervals. Forty-four patients, aged 2-15 years, have been treated: ten relapsed patients and 34 previously untreated with chemotherapy (including three relapsed stage I treated initially with radiotherapy). The median follow up for all patients is 25 months (range 6-52 months). The response rate in previously treated patients was 80% (95% CI 44-97%) and five remain alive in remission. The response rate in untreated patients was 88% (95% CI 72-97%) with 62% CR + CR(u) (uncertain/unconfirmed) (95% CI 44-77%). Of four patients who had a final response of CR(u) three have relapsed at 9, 16 and 38 months. Two of the children in CR have relapsed at 6 and 16 months. The relapse free rate at 3 years is 67% (95% CI 17-82%). In this pilot study the event free survival appears somewhat poorer than conventional combinations and further follow up is required to confirm the salvagability of relapsed patients
Does Young's equation hold on the nanoscale? A Monte Carlo test for the binary Lennard-Jones fluid
When a phase-separated binary () mixture is exposed to a wall, that
preferentially attracts one of the components, interfaces between A-rich and
B-rich domains in general meet the wall making a contact angle .
Young's equation describes this angle in terms of a balance between the
interfacial tension and the surface tensions ,
between, respectively, the - and -rich phases and the wall,
. By Monte Carlo simulations
of bridges, formed by one of the components in a binary Lennard-Jones liquid,
connecting the two walls of a nanoscopic slit pore, is estimated from
the inclination of the interfaces, as a function of the wall-fluid interaction
strength. The information on the surface tensions ,
are obtained independently from a new thermodynamic integration method, while
is found from the finite-size scaling analysis of the
concentration distribution function. We show that Young's equation describes
the contact angles of the actual nanoscale interfaces for this model rather
accurately and location of the (first order) wetting transition is estimated.Comment: 6 pages, 6 figure
- …