197 research outputs found

    Ab initio effective potentials for use in molecular quantum mechanics

    Get PDF
    We have investigated the method of effective potentials for replacing the core electrons in molecular calculations. The effective potential has been formulated in a way which simplifies computations while producing wave functions of ab initio quality. The effective potential is expressed in an analytic form which (i) represents the actual ab initio nonlocal potential (as defined by the matrix elements for a given basis set) and (ii) permits efficient computations of the effective-potential integrals (by incorporating the properties of Gaussian basis functions). To minimize the number of basis functions required in the molecular calculations, we define a new ab initio effective potential derived from modified Hartree-Fock valence orbitals whose core character has been removed. The effective-potential method as formulated becomes a very strong and reliable tool in attempting calculations on very large molecules. Applications to Li, Na, and K are presented

    Charge-transfer process using the molecular-wave-function approach: The asymmetric charge transfer and excitation in Li + Na+ and Na + Li+

    Get PDF
    The charge-transfer processes occurring in collisions of Li + Na+ and Na + Li+ have been studied theoretically using the molecular-wave-function approach. The wave functions and Born-Oppenheimer breakdown terms were evaluated using rigorous methods. The six lowest molecular states (dissociating to the 2s and 2p atomic states on Li and to the 3s and 3p atomic states of Na) were included in the coupled equations. The transition probabilities were calculated using linear trajectories for a variety of impact parameters and ion velocities. We find that the over-all transition processes are well represented as a succession of simple two-state transition processes (Σ-Σ, Σ-Π, and Π-Π). The Σ-Σ two-state process can be described in terms of three steps involving (i) a coupling region as the atoms come together [(10-20)a0], (ii) an uncoupled phase changing region for shorter separatons (<10a0), and (iii) a decoupling region as the atoms depart [(10-20)a0]. On the other hand, in the molecular—wave-function formulation, the Σ-Π two-state transition process involves continuous coupling (for R<7a0). As a result the transition probabilities for Σ-Π coupling differs from that of Σ-Σ coupling, leading to rather different forms for the cross sections

    Thermochemistry of Alane Complexes for Hydrogen Storage: A Theoretical and Experimental Comparison

    Full text link
    Knowledge of the relative stabilities of alane (AlH3) complexes with electron donors is essential for identifying hydrogen storage materials for vehicular applications that can be regenerated by off-board methods; however, almost no thermodynamic data are available to make this assessment. To fill this gap, we employed the G4(MP2) method to determine heats of formation, entropies, and Gibbs free energies of formation for thirty-eight alane complexes with NH3-nRn (R = Me, Et; n = 0-3), pyridine, pyrazine, triethylenediamine (TEDA), quinuclidine, OH2-nRn (R = Me, Et; n = 0-2), dioxane, and tetrahydrofuran (THF). Monomer, bis, and selected dimer complex geometries were considered. Using these data, we computed the thermodynamics of the key formation and dehydrogenation reactions that would occur during hydrogen delivery and alane regeneration, from which trends in complex stability were identified. These predictions were tested by synthesizing six amine-alane complexes involving trimethylamine, triethylamine, dimethylethylamine, TEDA, quinuclidine, and hexamine, and obtaining upper limits of delta G for their formation from metallic aluminum. Combining these computational and experimental results, we establish a criterion for complex stability relevant to hydrogen storage that can be used to assess potential ligands prior to attempting synthesis of the alane complex. Based on this, we conclude that only a subset of the tertiary amine complexes considered and none of the ether complexes can be successfully formed by direct reaction with aluminum and regenerated in an alane-based hydrogen storage system.Comment: Accepted by the Journal of Physical Chemistry
    corecore