38 research outputs found
Gathering in the City: An Annotated Bibliography and Review of the Literature About Human-Plant Interactions in Urban Ecosystems
The past decade has seen resurgence in interest in gathering wild plants and fungi in cities. In addition to gathering by individuals, dozens of groups have emerged in U.S., Canadian, and European cities to facilitate access to nontimber forest products (NTFPs), particularly fruits and nuts, in public and private spaces. Recent efforts within cities to encourage public orchards and food forests, and to incorporate more fruit and nut trees into street tree planting programs indicate a growing recognition among planners that gathering is an important urban activity. Yet the academic literature has little to say about urban gathering practices or the people who engage in them. This annotated bibliography and literature review is a step toward filling the gap in knowledge about the socioecological roles of NTFPs in urban ecosystems in the United States. Our objectives are to demonstrate that gathering—the collecting of food and raw materials—is a type of human-plant interaction that warrants greater attention in urban green space management, and to provide an overview of the literature on human-plant interactions—including gathering—in urban environments. Our review found that very few studies of urban gathering have been done. Consequently, we included gathering field guides, Web sites, and articles from the popular media in our search. These sources, together with the small number of scientific studies of urban gathering, indicated that people derive numerous benefits from gathering plants and fungi in U.S. cities. Gathering provides useful products, encourages physical activity, offers opportunities to connect with and learn about nature, helps strengthen social ties and cultural identities, and, in some contexts, can serve as a strategic tool for ecological restoration. These benefits parallel those identified in environmental psychology and cultural ecology studies of the effects of gardening and being in nature. The literature on human-plant interactions also emphasizes that humans need to be treated as endogenous factors in dynamic, socially and spatially heterogeneous urban ecosystems. Spatially explicit analyses of human-plant interactions show that the distribution of wealth and power within societies affects the composition, species distribution, and structure of urban ecologies. Our review also indicates that tensions exist between NTFP gatherers and land managers, as well as between gatherers and other citizens over gathering, particularly in public spaces. This tension likely is related to perceptions about the impact these practices have on cherished species and spaces. We conclude that gathering is an important urban activity and deserves a greater role in urban management given its social and potential ecological benefits. Research on urban gathering will require sensitivity to existing power imbalances and the use of theoretical frameworks and methodologies that assume humans are integral and not always negative components of ecosystems
Seasonality of bivalve larvae within a high Arctic fjord
Paid Open Acces
Recommended from our members
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation
Uniform and Robust Peptoid Microsphere Coatings
Peptoids that are helical and partially water soluble have been shown to self-assemble into microspheres when the peptoid solution is dried on a silicon substrate. Such microsphere coatings have great potential for use in biosensor technologies, specifically to increase the surface area for binding. However, in order to be useful, the peptoids must consistently form uniform coatings. In this study we investigated the effects of various coating protocol parameters on the uniformity of the resulting peptoid microsphere coatings, including (i) solvent, (ii) administration technique, and (iii) drying environment. In addition, we investigated the robustness of the coatings as well as the potential for using a glass substrate. These studies show that uniform, robust peptoid microsphere coatings can be formed using protic solvents, a full coverage administration technique, and drying in open air on silicon or glass substrates
Reply to V Gianfredi et al
Dear Editor: We thank Gianfredi et al. for their generous comments regarding the methodology used in our recent umbrella review and welcome their clear discussion of common queries regarding the scope and methods of umbrella reviews..