49 research outputs found

    Synthesis, characterization and thermal behaviour of solid state compounds of 4-methylbenzylidenepyruvate with lighter trivalent lanthanides

    No full text
    Solid state Ln-4-Me-BP compounds, where Ln stands for lighter trivalent lanthanides (lanthanum to europium) and 4-Me-BP is 4-methylbenzylidenepyruvate, have been synthesized. Elemental analysis, complexometry, X-ray powder diffractometry, infrared spectroscopy and simultaneous thermogravimetry-differential thermal analysis (TG-DTA), have been used to characterize and to study the thermal behaviour of these compounds. The results provided information concerning the stoichiometry, crystallinity, thermal stability and thermal decomposition. (C) 2002 Elsevier B.V. B.V. All rights reserved

    Soil-lime reactions: the behaviour of a Brazilian red soil.

    No full text
    A red tropical soil was selected, with the main purpose of investigating how it reacted with calcitic and dolomitic limes, and which products are formed. Under normal (23-28oC) or slightly accelerated (40o and 60oC) conditions there is a rapid and substantial interaction between lime (calcitic or dolomitic) and the soil. The reactions take place in two steps, one before 7 g lime/100 g soil, and the other after 8 g lime/100 g of soil, either for calcitic or dolomitic lime. A morphologically discrete reaction product (tri-calcium aluminate hexahydrate) was found in the study, and in spite of the difference in morphology the product is shown to be the same by XRD for all compositions and T.-J.M.H

    Synthesis, characterisation and thermal behaviour of solid state compounds of 4-methylbenzylidenepyruvate with heavier trivalent lanthanides and yttrium(III)

    No full text
    Solid state Ln-4-Me-BP compounds, where Ln stands for heavier trivalent lanthanides (gadolinium to lutetium) and yttrium(III) and 4-Me-BP is 4-methylbenzylidenepyruvate (CH3-C6H4-CH=CH-COCOO-), have been synthesized. Elemental analysis, complexometry, X-ray powder diffractometry, infrared spectroscopy and simultaneous thermogravimetry-differential thermal analysis (TG-DTA), have been used to characterise and to study the thermal behaviour of these compounds. The results provided information concerning the stoichiometry, crystallinity, ligand's denticity, thermal stability and thermal decomposition. © 2002 Elsevier Science B.V. All rights reserved

    Synthesis and thermal studies of solid state 2-chloro-benzylidenepyruvic acid and its compounds with sodium, aluminium (III), gallium (III) and indium (III) cations

    No full text
    A síntese do 2-clorobenzalpiruvato de sódio e seu respectivo ácido, bem como compostos binários, compostos binários junto com seu respectivo ácido ou hidroxo-2-clorobenzalpiruvato de alumínio (III), gálio (III) e de índio (III), foram isolados. Na caracterização e estudo do comportamento térmico desses compostos foram utilizados a termogravimetria, termogravimetria derivada (TG/DTG), termogravimetria-analise térmica diferencial simultânea (TG-DTA), difratometria de raios X pelo método do pó e análise química. Os resultados forneceram informações com respeito a estequiometria, cristalinidade, estabilidade e decomposição térmica.The synthesis of sodium 2-chlorobenzylidenepyruvate and its corresponding acid as well as binary, binary together with it's acid or hydroxo-2-chorobenzylidenepyruvate of aluminium (III), gallium (III) and indium (III), were isolated. Chemical analysis, thermogravimetry, derivative thermogravimetry (TG/DTG), simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and X-ray powder diffractometry have been employed to characterize and to study the thermal behaviour of these compounds. The results provided information concerning the stoichiometry, crystallinity, thermal stability and thermal decomposition.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Thermal studies of solid 4-chlorobenzylidenepyruvates of heavy lanthanides(III) and yttrium(III)

    No full text
    Solid-state compounds of general formula LnL(3).2H(2)O, where Ln is heavier trivalent lanthanides and yttrium, L is 4-chlorobenzylidenepyruvate have been synthetised.On heating these compounds decompose in steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds occurs with the formation of oxochloride (Eu, Gd); mixture of oxide and oxochloride that decrease with increasing of atomic number of metal (Tb-Tm); or oxide (Yb, Lu, Y) as final residue, up to 900degreesC. The dehydration enthalpies found for terbium, holmium, ytterbium and yttrium compounds were: 34.93, 42.40, 57.39 and 62.24 kJ mol(-1), respectively

    Chromotropic acid-formaldehyde reaction in strongly acidic media. The role of dissolved oxygen and replacement of concentrated sulphuric acid

    No full text
    The procedure for formaldehyde analysis recommended by the National Institute for Occupational Safety and Health (NIOSH) is the Chromotropic acid spectrophotometric method, which is the one that uses concentrated sulphuric acid. In the present study the oxidation step associated with the aforementioned method for formaldehyde determination was investigated. Experimental evidence has been obtained indicating that when concentrated H2SO4 (18 mol l(-1)) is used (as in the NIOSH procedure) that acid is the oxidizing agent. on the other hand, oxidation through dissolved oxygen takes place when concentrated H2SO4 is replaced by concentrated hydrochloric (12 mol l(-1)) and phosphoric (14.7 mol l(-1)) acids as well as by diluted H2SO4 (9.4 mol l(-1)). Based on investigations concerning the oxidation step, a modified procedure was devised, in which the use of the potentially hazardous and corrosive concentrated H2SO4 was eliminated and advantageously replaced by a less harmful mixture of HCl and H2O2. (C) 2003 Elsevier B.V. B.V. All rights reserved

    The preparation and thermal decomposition of some metal compounds of 4-dimethylaminobenzylidenepyruvate in the solid state

    No full text
    Solid M-DMBP compounds, where M represents Mg(II), Ca(II), Sr(II), Ba(II), Ni(II), Cu(II), Zn(II), Fe(III), La(III), Th(IV), and DMBP is 4-dimethylaminobenzylidenepyruvate, have been prepared. Thermogravimetry-derivative thermogravimetry (TG-DTG), differential scanning calorimetry (DSC) and other methods of analysis have been used to characterize and to study the thermal stability and thermal decomposition of these compounds. © 1995
    corecore