100 research outputs found

    Role of finite layer thickness in spin-polarization of GaAs 2D electrons in strong parallel magnetic fields

    Full text link
    We report measurements and calculations of the spin-polarization, induced by a parallel magnetic field, of interacting, dilute, two-dimensional electron systems confined to GaAs/AlGaAs heterostructures. The results reveal the crucial role the non-zero electron layer thickness plays: it causes a deformation of the energy surface in the presence of a parallel field, leading to enhanced values for the effective mass and g-factor and a non-linear spin-polarization with field.Comment: 4 pages, 4 figures, Fig. 4 has been replaced from the previous version, minor changes in the tex

    Negative differential Rashba effect in two-dimensional hole systems

    Full text link
    We demonstrate experimentally and theoretically that two-dimensional (2D) heavy hole systems in single heterostructures exhibit a \emph{decrease} in spin-orbit interaction-induced spin splitting with an increase in perpendicular electric field. Using front and back gates, we measure the spin splitting as a function of applied electric field while keeping the density constant. Our results are in contrast to the more familiar case of 2D electrons where spin splitting increases with electric field.Comment: 3 pages, 3 figures. To appear in AP

    Structural and electrical characterization of hybrid metal-polypyrrole nanowires

    Full text link
    We present here the synthesis and structural characterization of hybrid Au-polypyrrole-Au and Pt- polypyrrole-Au nanowires together with a study of their electrical properties from room-temperature down to very low temperature. A careful characterization of the metal-polymer interfaces by trans- mission electron microscopy revealed that the structure and mechanical strength of bottom and upper interfaces are very different. Variable temperature electrical transport measurements were performed on both multiple nanowires - contained within the polycarbonate template - and single nanowires. Our data show that the three-dimensional Mott variable-range-hopping model provides a complete framework for the understanding of transport in PPy nanowires, including non-linear current-voltage characteristics and magnetotransport at low temperatures.Comment: Phys. Rev. B Vol. 76 Issue 11 (2007

    Anomalous Spin Polarization of GaAs Two-Dimensional Hole Systems

    Full text link
    We report measurements and calculations of the spin-subband depopulation, induced by a parallel magnetic field, of dilute GaAs two-dimensional (2D) hole systems. The results reveal that the shape of the confining potential dramatically affects the values of in-plane magnetic field at which the upper spin subband is depopulated. Most surprisingly, unlike 2D electron systems, the carrier-carrier interaction in 2D hole systems does not significantly enhance the spin susceptibility. We interpret our findings using a multipole expansion of the spin density matrix, and suggest that the suppression of the enhancement is related to the holes' band structure and effective spin j=3/2.Comment: 6 pages, 4 figures, substantially extended discussion of result

    Observation of a new phase transition between fully and partially polarized quantum Hall states with charge and spin gaps at ν=2/3\nu = 2/3

    Full text link
    The average electron spin-polarization P\cal P of two-dimensional electron gas confined in GaAs/GaAlAs\rm GaAs/GaAlAs multiple quantum-wells was measured by nuclear magnetic resonance (NMR) near the fractional quantum Hall state with filling factor ν=2/3\nu={2/3}. Above this filling factor (2/3ν<0.85{{2/3}} \leq \nu < 0.85), a strong depolarization is observed corresponding to two spin flips per additional flux quantum. The most remarkable behavior of the polarization is observed at ν=2/3\nu ={{2/3}}, where a quantum phase transition from a partially polarized (P3/4{\cal P} \approx {{3/4}}) to a fully polarized (P=1{\cal P} = 1) state can be driven by increasing the ratio between the Zeeman and the Coulomb energy above a critical value ηc=ΔZΔC=0.0185\eta_{c} = \frac{\Delta_{Z}}{\Delta_{C}} = 0.0185.Comment: 4 pages including 4 figure

    Thermopower of Interacting GaAs Bilayer Hole Systems in the Reentrant Insulating Phase near ν=1\nu=1

    Full text link
    We report thermopower measurements of interacting GaAs bilayer hole systems. When the carrier densities in the two layers are equal, these systems exhibit a reentrant insulating phase near the quantum Hall state at total filling factor ν=1\nu=1. Our data show that as the temperature is decreased, the thermopower diverges in the insulating phase. This behavior indicates the opening of an energy gap at low temperature, consistent with the formation of a pinned Wigner solid. We extract an energy gap and a Wigner solid melting phase diagram.Comment: to be published in Phys. Rev. Let

    Layer charge instability in unbalanced bilayer systems in the quantum Hall regime

    Full text link
    Measurements in GaAs hole bilayers with unequal layer densities reveal a pronounced magneto-resistance hysteresis at the magnetic field positions where either the majority or minority layer is at Landau level filling factor one. At a fixed field in the hysteretic regions, the resistance exhibits an unusual time dependence, consisting of random, bidirectional jumps followed by slow relaxations. These anomalies are apparently caused by instabilities in the charge distribution of the two layers.Comment: 4 pages, 4 figure

    NMR Determination of 2D Electron Spin Polarization at ν=1/2\nu=1/2

    Full text link
    Using a `standard' NMR spin-echo technique we determined the spin polarization of two-dimensional electrons, confined to GaAs quantum wells, from the hyperfine shift of Ga nuclei in the wells. Concentrating on the temperature and magnetic field dependencies of spin polarization at Landau level filling factor ν=1/2\nu =1/2, we find that the results are described well by a simple model of non-interacting composite fermions, although some inconsistencies remain when the two-dimensional electron system is tilted in the magnetic field.Comment: 4 pages (REVTEX) AND 4 figures (PS

    A Laterally Modulated 2D Electron System in the Extreme Quantum Limit

    Full text link
    We report on magnetotransport of a two-dimensional electron system (2DES), located 32 nm below the surface, with a surface superlattice gate structure of periodicity 39 nm imposing a periodic modulation of its potential. For low Landau level fillings ν\nu, the diagonal resistivity displays a rich pattern of fluctuations, even though the disorder dominates over the periodic modulation. Theoretical arguments based on the combined effects of the long-wavelength, strong disorder and the short-wavelength, weak periodic modulation present in the 2DES qualitatively explain the data.Comment: 4 pages, 5 figures. to appear in Phys. Rev. Let
    corecore