2,001 research outputs found
Information technology and libraries
pp. 11-12 ; summary by Ruth Gustafson and Gene R. Majo
Recommended from our members
Design and implementation of objectives-based programs : a model and partial validation.
EducationDoctor of Education (Ed.D.
Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: sensitivity to changes in vegetation nitrogen concentration
We ran the terrestrial ecosystem model (TEM) for the globe at 0.5° resolution for atmospheric CO2 concentrations of 340 and 680 parts per million by volume (ppmv) to evaluate global and regional responses of net primary production (NPP) and carbon storage to elevated CO2 for their sensitivity to changes in vegetation nitrogen concentration. At 340 ppmv, TEM estimated global NPP of 49.0 1015 g (Pg) C yrâ1 and global total carbon storage of 1701.8 Pg C; the estimate of total carbon storage does not include the carbon content of inert soil organic matter. For the reference simulation in which doubled atmospheric CO2 was accompanied with no change in vegetation nitrogen concentration, global NPP increased 4.1 Pg C yrâ1 (8.3%), and global total carbon storage increased 114.2 Pg C. To examine sensitivity in the global responses of NPP and carbon storage to decreases in the nitrogen concentration of vegetation, we compared doubled CO2 responses of the reference TEM to simulations in which the vegetation nitrogen concentration was reduced without influencing decomposition dynamics (âlower Nâ simulations) and to simulations in which reductions in vegetation nitrogen concentration influence decomposition dynamics (âlower N+Dâ simulations). We conducted three lower N simulations and three lower N+D simulations in which we reduced the nitrogen concentration of vegetation by 7.5, 15.0, and 22.5%. In the lower N simulations, the response of global NPP to doubled atmospheric CO2 increased approximately 2 Pg C yrâ1 for each incremental 7.5% reduction in vegetation nitrogen concentration, and vegetation carbon increased approximately an additional 40 Pg C, and soil carbon increased an additional 30 Pg C, for a total carbon storage increase of approximately 70 Pg C. In the lower N+D simulations, the responses of NPP and vegetation carbon storage were relatively insensitive to differences in the reduction of nitrogen concentration, but soil carbon storage showed a large change. The insensitivity of NPP in the N+D simulations occurred because potential enhancements in NPP associated with reduced vegetation nitrogen concentration were approximately offset by lower nitrogen availability associated with the decomposition dynamics of reduced litter nitrogen concentration. For each 7.5% reduction in vegetation nitrogen concentration, soil carbon increased approximately an additional 60 Pg C, while vegetation carbon storage increased by only approximately 5 Pg C. As the reduction in vegetation nitrogen concentration gets greater in the lower N+D simulations, more of the additional carbon storage tends to become concentrated in the north temperate-boreal region in comparison to the tropics. Other studies with TEM show that elevated CO2 more than offsets the effects of climate change to cause increased carbon storage. The results of this study indicate that carbon storage would be enhanced by the influence of changes in plant nitrogen concentration on carbon assimilation and decomposition rates. Thus changes in vegetation nitrogen concentration may have important implications for the ability of the terrestrial biosphere to mitigate increases in the atmospheric concentration of CO2 and climate changes associated with the increases
Long term survival of mature autotransplanted teeth: A retrospective single center analysis
Objective: The replacement of an irremediably compromised tooth requires an implant rehabilitation or a traditional fixed partial denture. In well-selected cases, a further therapeutic possibility is represented by tooth autotransplantation. Although dental transplants are poorly understood and practiced, the international literature agrees that it is considered the first choice when applicable. The advantages of this technique are numerous: use of an autologous element, maintenance of tissue trophism, aesthetic and functional restoration, costs reduction. Although autotransplantation is often performed with immature teeth, even mature teeth with fully formed apex can be used as donors. The aim of the present work was to analyze consecutive cases of completely formed donor teeth autotransplantations performed from 2005 to 2011 in 21 patients for evaluating the survival and success rate. Materials and methods: The medical records of patients who underwent transplantation in a specialized center in Rimini (Italy) from 2005 to 2011 were checked. Only transplants of mature donor molars were considered. Patients were called up to evaluate the survival rate and success rate. Results: The mean age at the time of the surgery was 33,6 \ub1 7,4; mean follow up was 11,9 years \ub11,9. Success rate at the time of latest recall visit was 80 % and survival 95 % of the analyzed cases. Conclusions: The survival and success rate are in complete agreement with the most recent literature and confirm that the technique of autotransplantation is reliable when indications and protocols are rigidly followed, also using mature teeth as donors
Land-Use Change, Soil Process and Trace Gas Fluxes in the Brazilian Amazon Basin
We measured changes in key soil processes and the fluxes of CO2, CH4 and N2O associated with the conversion of tropical rainforest to pasture in Rondonia, a state in the southwest Amazon that has experienced rapid deforestation, primarily for cattle ranching, since the late 1970s. These measurements provide a comprehensive quantitative picture of the nature of surface soil element stocks, C and nutrient dynamics, and trace gas fluxes between soils and the atmosphere during the entire sequence of land-use change from the initial cutting and burning of native forest, through planting and establishment of pasture grass and ending with very old continuously-pastured land. All of our work is done in cooperation with Brazilian scientists at the Centro de Energia Nuclear na Agricultura (CENA) through an extant official bi-lateral agreement between the Marine Biological Laboratory and the University of Sao Paulo, CENA's parent institution
Green House Gas Mitigation Policy, Bio-fuels and Land-use Change- a Dynamic Analysis
Research and Development/Tech Change/Emerging Technologies, Resource /Energy Economics and Policy,
Decreased soil organic matter in a long-term soil warming experiment lowers soil water holding capacity and affects soil thermal and hydrological buffering
Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research- Biogeosciences 125(4), (2020): e2019JG005158, doi:10.1029/2019JG005158.Longâterm soil warming can decrease soil organic matter (SOM), resulting in selfâreinforcing feedback to the global climate system. We investigated additional consequences of SOM reduction for soil water holding capacity (WHC) and soil thermal and hydrological buffering. At a longâterm soil warming experiment in a temperate forest in the northeastern United States, we suspended the warming treatment for 104 days during the summer of 2017. The formerly heated plot remained warmer (+0.39 °C) and drier (â0.024 cm3 H2O cmâ3 soil) than the control plot throughout the suspension. We measured decreased SOM content (â0.184 g SOM gâ1 for O horizon soil, â0.010 g SOM gâ1 for A horizon soil) and WHC (â0.82 g H2O gâ1 for O horizon soil, â0.18 g H2O gâ1 for A horizon soil) in the formerly heated plot relative to the control plot. Reduced SOM content accounted for 62% of the WHC reduction in the O horizon and 22% in the A horizon. We investigated differences in SOM composition as a possible explanation for the remaining reductions with Fourier transform infrared (FTIR) spectra. We found FTIR spectra that correlated more strongly with WHC than SOM, but those particular spectra did not differ between the heated and control plots, suggesting that SOM composition affects WHC but does not explain treatment differences in this study. We conclude that SOM reductions due to soil warming can reduce WHC and hydrological and thermal buffering, further warming soil and decreasing SOM. This feedback may operate in parallel, and perhaps synergistically, with carbon cycle feedbacks to climate change.We would like to acknowledge Jeffery Blanchard, Priya Chowdhury, Kristen DeAngelis, Luiz DominguezâHorta, Kevin Geyer, Rachelle Lacroix, Xaiojun Liu, William Rodriguez, and Alexander Truchonand and for assistance with field sampling. We would like to acknowledge Michael Bernard for assistance with field sampling and lab work. We would like to acknowledge Aaron Ellison for statistical consultation. This research was financially supported by the U.S. National Science Foundation's Long Term Ecological Research Program (NSFâDEBâ0620443 and NSFâDEBâ1237491), the Long Term Research in Environmental Biology Program (NSF DEBâ1456528) , and the U.S. Department of Energy (DOEâDEâSC0005421 and DOEâDEâSC0010740). Data used in this study are available from the Harvard Forest Data Archive (Datasets HF018â03, HF018â04, and HF018â13), accessible at https://harvardforest.fas.harvard.edu/harvardâforestâdataâarchive.2020-10-0
Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America
We use the terrestrial ecosystem model (TEM), a process-based model, to investigate how interactions between carbon (C) and nitrogen (N) dynamics affect predictions of net primary productivity (NPP) for potential vegetation in North America. Data on pool sizes and fluxes of C and N from intensively studied field sites are used to calibrate the model for each of 17 non-wetland vegetation types. We use information on climate, soils, and vegetation to make estimates for each of 11,299 non-wetland, 0.5° latitude Ă 0.5° longitude, grid cells in North America. The potential annual NPP and net N mineralization (NETNMIN) of North America are estimated to be 7.032 Ă 1015 g C yrâ1 and 104.6 Ă 1012 g N yrâ1, respectively. Both NPP and NETNMIN increase along gradients of increasing temperature and moisture in northern and temperate regions of the continent, respectively. Nitrogen limitation of productivity is weak in tropical forests, increasingly stronger in temperate and boreal forests, and very strong in tundra ecosystems. The degree to which productivity is limited by the availability of N also varies within ecosystems. Thus spatial resolution in estimating exchanges of C between the atmosphere and the terrestrial biosphere is improved by modeling the linkage between C and N dynamics. We also perform a factorial experiment with TEM on temperate mixed forest in North America to evaluate the importance of considering interactions between C and N dynamics in the response of NPP to an elevated temperature of 2°C. With the C cycle uncoupled from the N cycle, NPP decreases primarily because of higher plant respiration. However, with the C and N cycles coupled, NPP increases because productivity that is due to increased N availability more than offsets the higher costs of plant respiration. Thus, to investigate how global change will affect biosphere-atmosphere interactions, process-based models need to consider linkages between the C and N cycles
- âŠ