2 research outputs found

    Identification of a region required for TSC1 stability by functional analysis of TSC1 missense mutations found in individuals with tuberous sclerosis complex

    Get PDF
    Background: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterised by the development of hamartomas in a variety of organs and tissues. The disease is caused by mutations in either the TSC1 gene on chromosome 9q34, or the TSC2 gene on chromosome 16p13.3. The TSC1 and TSC2 gene products, TSC1 and TSC2, form a protein complex that inhibits signal transduction to the downstream effectors of the mammalian target of rapamycin (mTOR). Recently it has been shown that missense mutations to the TSC1 gene can cause TSC. Methods: We have used in vitro biochemical assays to investigate the effects on TSC1 function of TSC1 missense variants submitted to the Leiden Open Variation Database. Results: We identified specific substitutions between amino acids 50 and 190 in the N-terminal region of TSC1 that result in reduced steady state levels of the protein and lead to increased mTOR signalling. Conclusion: Our results suggest that amino acid residues within the N-terminal region of TSC1 are important for TSC1 function and for maintaining the activity of the TSC1-TSC2 complex

    Functional assessment of variants in the TSC1 and TSC2 genes identified in individuals with Tuberous Sclerosis Complex

    No full text
    The effects of missense changes and small in-frame deletions and insertions on protein function are not easy to predict, and the identification of such variants in individuals at risk of a genetic disease can complicate genetic counselling. One option is to perform functional tests to assess whether the variants affect protein function. We have used this strategy to characterize variants identified in the TSC1 and TSC2 genes in individuals with, or suspected of having, Tuberous Sclerosis Complex (TSC). Here we present an overview of our functional studies on 45 TSC1 and 107 TSC2 variants. Using a standardized protocol we classified 16 TSC1 variants and 70 TSC2 variants as pathogenic. In addition we identified eight putative splice site mutations (five TSC1 and three TSC2). The remaining 24 TSC1 and 34 TSC2 variants were classified as probably neutral
    corecore