24 research outputs found

    Nuclear imaging and semi-invasive electrocardiography in CRT

    Get PDF
    Cardiac resynchronisation therapy (CRT) is a promising treatment option in patients with chronic heart failure. In this article the roles of semi-invasive esophageal left-heart electrocardiography and functional cardiac nuclear imaging in the field of CRT are highlighted, as the combination of both could be a favourable diagnostic approach in special cardiac situations. Also original esophageal left heart electrogram data of exemplary CRT patients is presented

    Plug-in circuit board for the Raspberry-Pi microcomputer to reproduce multi-channel original electrocardiograms

    Get PDF
    Commercial simulators can only reproduce electrocardiograms (ECG) of the normal and diseased heart rhythm in a simplified waveform and with a low number of channels. With the presented project, the variety of digitally archived ECGs, recorded during electrophysiological examinations, should be made usable as original analogue signals for research and teaching purposes by the development of a special printed circuit board for the mini-computer “Raspberry-Pi “

    Combined epicardial and endocardial ablation for atrial fibrillation:Best practices and guide to hybrid convergent procedures

    Get PDF
    The absence of strategies to consistently and effectively address nonparoxysmal atrial fibrillation by nonpharmacological interventions has represented a long-standing treatment gap. A combined epicardial/endocardial ablation strategy, the hybrid Convergent procedure, was developed in response to this clinical need. A subxiphoid incision is used to access the pericardial space facilitating an epicardial ablation directed at isolation of the posterior wall of the left atrium. This is followed by an endocardial ablation to complete isolation of the pulmonary veins and for additional ablation as needed. Experience gained with the hybrid Convergent procedure during the last decade has led to the development and adoption of strategies to optimize the technique and mitigate risks. Additionally, a surgical and electrophysiology "team" approach including comprehensive training is believed critical to successfully develop the hybrid Convergent program. A recently completed randomized clinical trial indicated that this ablation strategy is superior to an endocardial-only approach for patients with persistent atrial fibrillation. In this review, we propose and describe best practice guidelines for hybrid Convergent ablation on the basis of a combination of published data, author consensus, and expert opinion. A summary of clinical outcomes, emerging evidence, and future perspectives is also given

    Importance of atrial kick in cardiac resynchronization

    No full text
    Non-responder rate in cardiac resynchronization therapy (CRT) could be partly decreased by individualized parameter optimization excluding adverse hemodynamic timing. In heart failure patients with sinus rhythm, an atrial kick enables the completion of atrial contraction and may significantly enhance the ventricular filling. Compared to that, exclusion of atrial kick is a sign of suboptimal atrioventricular timing. However, the recognition of atrial kick by echocardiography will be negatively affected in patients requiring a very short or long AV delays

    High-resolution semi-invasive left heart electrocardiography in cardiac pacing and cardiac resynchronization Therapy.

    No full text
    Responder-rate in cardiac resynchronization therapy (CRT) of patients in sinus rhythm (SR) or atrial fibrillation (AF) mainly depends on accurat selection, optimal position of the left ventricular electrode and individualization of hemodynamical parameters of the implanted biventricular pacing system during follow-up. High resolution esophageal left heart electrocardiography offers a quick and semi-invasive approach to the electrical activity of left atrium and left ventricle. It was used in 62 heart failure patients in sinus rhythm and 11 in atrial fibrillation after implantation of CRT systems to compare the semi-invasive interventricular conduction delay (IVCDE) with QRS width. In all of the patients, guideline decision for CRT was linked with IVCDE of about 40ms and up. From logical point of view, IVCDE provides the minimal target interval for the left ventricular electrode placement in order to exclude non-responders. Esophageal measurement of interatrial conduction intervals in VDD and DDD pacing was utilized to individualize the AV delay and to exclude adverse hemodynamic effects

    Plug-in circuit board for the Raspberry-Pi microcomputer to reproduce multi-channel original electrocardiograms

    No full text
    Commercial simulators can only reproduce electrocardiograms (ECG) of the normal and diseased heart rhythm in a simplified waveform and with a low number of channels. With the presented project, the variety of digitally archived ECGs, recorded during electrophysiological examinations, should be made usable as original analogue signals for research and teaching purposes by the development of a special printed circuit board for the minicomputer “Raspberry-Pi “

    Abstract: Feasibility of preprocedural LAA occluder sizing

    No full text
    Purpose: Development of a new approach allowing preprocedural occluder sizing and its validation by conventional intraprocedural methods

    Novel semi-invasive left-heart electrogram feature to select patients with atrial fibrillation for cardiac resynchronization

    No full text
    About 20% of those heart failure patients receiving cardiac resynchronization therapy (CRT) are in atrial fibrillation (AF). Current guidelines apply for patients in sinus rhythm only. Recent studies have shown again, that successful resynchronization is closely linked to a pre-existent ventricular desynchronization. In those studies, the interventricular conduction delay (IVCD) was determined prior to device implantation by ultrasound in patients with sinus rhythm (SR)only. In patients with AF this method ́s use is limited. To implement left-heart electrogram (LHE) into standard programmers and to simplify IVCD measurement in heart failure patients with AF, LHE was recorded in 11 AF patients with heart failure by Biotronik ICS3000 programmer via a15Hz Butterworth high-pass filter. Therefore, TOslim esophageal electrode (Dr. Osypka GmbH, Rheinfelden, Germany) was perorally applied and fixed in position of maximal left ventricular defection. IVCD was measured between onset of QRS in surface ECG and left ventricular defection (LV) in LHE. In addition, intra-left ventricular conduction delay (ILVCD) was measured as duration of LV in LHE. In all of the 11 AF patients, desynchronization was quantifiable by LHE. Mean QRS of 162 ± 27ms (120-206ms) was linked with IVCD of 62ms ± 27ms (37-98ms) and ILVCD of 110 ± 20ms (80-144ms), at mean. Correlation between IVCD and QRS was 0.39 (n. s.) with IVCD/QRS ratio of 0.38 ± 0.11 (0.22-0.81). A 15Hz high-pass filtered LHE feature of the Biotronik ICS3000 programmer is feasible to quantify ventricular dyssynchrony in heart failure patients with AF in order to clearly indicate implantation of CRT systems. As relations between QRS duration, IVCD and ILVCD considerably differ interindividually, the predictive values of IVCD, ILVCD and IVCD/QRS ratio for individual CRT response or non-response shall be identified in follow-up studies
    corecore