50 research outputs found

    Transfer of albedo and local depth variation to photo-textures

    Get PDF
    Acquisition of displacement and albedo maps for full building façades is a difficult problem and traditionally achieved through a labor intensive artistic process. In this paper, we present a material appearance transfer method, Transfer by Analogy, designed to infer surface detail and diffuse reflectance for textured surfaces like the present in building façades. We begin by acquiring small exemplars (displacement and albedo maps), in accessible areas, where capture conditions can be controlled. We then transfer these properties to a complete phototexture constructed from reference images and captured under diffuse daylight illumination. Our approach allows super-resolution inference of albedo and displacement from information in the photo-texture. When transferring appearance from multiple exemplars to façades containing multiple materials, our approach also sidesteps the need for segmentation. We show how we use these methods to create relightable models with a high degree of texture detail, reproducing the visually rich self-shadowing effects that would normally be difficult to capture using just simple consumer equipment. Copyright © 2012 by the Association for Computing Machinery, Inc

    Fluidized Bed Membrane Reactors for Ultra Pure H2 Production - A Step forward towards Commercialization

    Get PDF
    In this research the performance of a fluidized bed membrane reactor for high temperature water gas shift and its long term stability was investigated to provide a proof-of-concept of the new system at lab scale. A demonstration unit with a capacity of 1 Nm3/h of ultra-pure H2 was designed, built and operated over 900 h of continuous work. Firstly, the performance of the membranes were investigated at different inlet gas compositions and at different temperatures and H2 partial pressure differences. The membranes showed very high H2 fluxes (3.89E 6 mol m 2 Pa 1 s 1 at 400 C and 1 atm pressure difference) with a H2/N2 ideal perm-selectivity (up to 21,000 when integrating five membranes in the module) beyond the DOE 2015 targets. Monitoring the performance of the membranes and the reactor confirmed a very stable performance of the unit for continuous high temperature water gas shift under bubbling fluidization conditions. Several experiments were carried out at different temperatures, pressures and various inlet compositions to determine the optimum operating window for the reactor. The obtained results showed high hydrogen recovery factors, and very low CO concentrations at the permeate side (in average <10 ppm), so that the produced hydrogen can be directly fed to a low temperature PEM fuel cell

    Comparison between carbon molecular sieve and Pd-Ag membranes in H2-CH4 separation at high pressure

    Get PDF
    From a permeability and selectivity perspective, supported thin-film Pd–Ag membranes are the best candidates for high-purity hydrogen recovery for methane-hydrogen mixtures from the natural gas grid. However, the high hydrogen flux also results in induced bulk-to-membrane mass transfer limitations (concentration polarization) especially when working at low hydrogen concentration and high pressure, which further reduces the hydrogen permeance in the presence of mixtures. Additionally, Pd is a precious metal and its price is lately increasing dramatically. The use of inexpensive CMSM could become a promising alternative. In this manuscript, a detailed comparison between these two membrane technologies, operating under the same working pressure and mixtures, is presented. First, the permeation properties of CMSM and Pd–Ag membranes are compared in terms of permeance and purity, and subsequently, making use of this experimental investigation, an economic evaluation including capital and variable costs has been performed for a separation system to recover 25 kg/day of hydrogen from a methane-hydrogen mixture. To widen the perspective, also a sensitivity analysis by changing the pressure difference, membrane lifetime, membrane support cost and cost of Pd/Ag membrane recovery has been considered. The results show that at high pressure the use of CMSM is to more economic than the Pd-based membranes at the same recovery and similar purity.This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agree-ment No 700355. This Joint Undertaking receives support fromthe European Union’s Horizon 2020 research and innovation

    Attrition-resistant membranes for fluidized-bed membrane reactors: Double-skin membranes

    Get PDF
    Pd-Ag supported membranes have been prepared by coating a ceramic interdiffusion barrier onto a Hastelloy X (0.2 µm media grade) porous support followed by deposition of the hydrogen selective Pd-Ag (4–5 µm) layer by electroless plating. To one of the membranes an additional porous Al2O3-YSZ layer (protective layer with 50 wt% of YSZ) was deposited by dip-coating followed by calcination at 550 °C on top of the Pd-Ag layer, and this membrane is referred to as a double-skin membrane. Both membranes were integrated at the same time in a single reactor in order to assess and compare the performance of both membranes under identical conditions. The membranes have first been tested in an empty reactor with pure gases (H2 and N2) and afterwards in the presence of a catalyst (rhodium onto promoted alumina) fluidized in the bubbling regime. The membranes immersed in the bubbling bed were tested at 400 °C and 500 °C for 115 and 500 h, respectively. The effect of the protective layer on the permeation properties and stability of the membranes were studied. The double-skinned membraned showed a H2 permeance of 1.55·10−6 mol m−2 s−1 Pa−1 at 500 °C and 4 bar of pressure difference with an ideal perm-selectivity virtually infinite before incorporation of particles. This selectivity did not decay during the long term test under fluidization with catalyst particles.The presented work is funded within FERRET project as part of European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n. 621181. Note: “The present publication reflects only the authors' views and the Union is not liable for any use that may be made of the information contained therein”

    On concentration polarisation in a fluidized bed membrane reactor for biogas steam reforming: modelling and experimental validation

    Get PDF
    The production of pure hydrogen through the steam reforming of biogas in a fluidized bed membrane reactor has been studied. A phenomenological one-dimensional two-phase fluidized bed reactor model accounting for concentration polarisation with a stagnant film model has been developed and used to investigate the system performance. The validation of the model was performed with steam reforming experiments at temperatures ranging from 435 °C up to 535 °C, pressures between 2 to 5 bar and CO2/CH4 ratios up to 0.9. The permeation performance of the ceramic-supported PdAg thin-film membrane was first characterized separately for both pure gas and gas mixtures. Subsequently, the membrane was immersed into a fluidized bed containing Rh supported on alumina particles and the reactor performance, viz. the methane conversion, hydrogen recovery and hydrogen purity, was evaluated under biogas steam reforming conditions. The resulting hydrogen purity under biogas steam reforming conditions was up to 99.8%. The model results were in very good agreement with the experimental results, when assuming a thickness of the stagnant mass transfer boundary layer around the membrane equal to 0.54 cm. It is shown that the effects of concentration polarisation in a fluidized bed membrane reactor can be well described with the implementation of a film layer description in the two-phase model.The presented work is funded within BIONICO. This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 671459. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation Programme, Hydrogen Europe and N.ERGHY

    Development of selective Pd–Ag membranes on porous metal filters

    Get PDF
    Metallic supports with sufficient surface quality to achieve highly selective thin Pd–Ag membranes require specific pre-treatments, are not readily available on the market and are generally very expensive. To reduce costs, rough and large media grade Hastelloy X filters have been acquired and pre-treated via polishing and chemical etching. The loss in gas permeance given by the polishing treatment proved fully recovered after chemical etching. A method to fill the large pores of the filters via aspiration of α-Al2O3 water-powder suspension has been applied and characterized via imaging of the filled pores, inferential statistics, and capillary flow porometry measurements. The most suitable filler particle size for pore size distribution reduction has been identified as 18 μm, while a 5 μm filler proved optimal for further pore morphology improvement. The wide pore size distribution of the filters has thus been reduced up to 200 nm by filling with α-Al2O3 particles of decreasing size, similarly to the ceramic supports used for thin Pd–Ag membranes deposition. A boehmite based interdiffusion barrier has been deposited, achieving further surface roughness reduction. A highly H2 selective membrane has been obtained via simultaneous Pd–Ag plating on the pre-treated filter

    Functional, thermal and EMC analysis for a safety critical analogue design applied to a transportation systems

    Get PDF
    Safety-critical equipment depends on the study of functional, thermal, EMC (Electromagnetic Compatibility) and RAMS (Reliability, Availability, Maintainability and Safety) fields. The variation of one area characteristic could result in a failure to fulfil safety requirements. Traditionally, thermal, EMC or RAMS issues were only considered once the design was done. This paper proposes a novel analogue equipment design methodology by studying these areas dependently from the beginning of the design process. Each area requirements and design parameters and the relation among them are defined qualitatively and quantitatively. Based on these dependences among all the areas, the cross-influence of each parameter variation in other areas requirements is demonstrated. The obtained results are intended to aid the fulfilment of requirements of the design of any safety critical analogue circuit, and to help designers to know beforehand the consequences of any change in the design, saving time and money. The application of this methodology in a SIL 2 RF transmitter is shown and the improvement and worsening of requirements depending on the parameters variation is exposed

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    corecore