179 research outputs found

    Nationwide Survival Benefit after Implementation of First-Line Immunotherapy for Patients with Advanced NSCLC—Real World Efficacy

    Get PDF
    SIMPLE SUMMARY: The expected change in overall survival (OS) in patients with advanced non-small cell lung cancer (NSCLC) after the clinical implementation of immune checkpoint inhibitor therapy (ICI) has not been substantially investigated in large real-world cohorts outside randomized controlled trials (RCTs). In this nationwide study, we compared OS before and after the implementation of ICI and found that 3-year OS tripled from 6% to 18%. Patients receiving ICI had a lower OS than demonstrated in RCTs, except for patients with performance status (PS) 0. More than a fifth of the patients progressed early within the first six ICI cycles. Adverse prognostic factors were PS ≥ 1 and metastases to the bone and liver. ABSTRACT: Background The selection of patients with non-small cell lung cancer (NSCLC) for immune checkpoint inhibitor (ICI) treatment remains challenging. This real-world study aimed to compare the overall survival (OS) before and after the implementation of ICIs, to identify OS prognostic factors, and to assess treatment data in first-line (1L) ICI-treated patients without epidermal growth factor receptor mutation or anaplastic lymphoma kinase translocation. Methods Data from the Danish NSCLC population initiated with 1L palliative antineoplastic treatment from 1 January 2013 to 1 October 2018, were extracted from the Danish Lung Cancer Registry (DLCR). Long-term survival and median OS pre- and post-approval of 1L ICI were compared. From electronic health records, additional clinical and treatment data were obtained for ICI-treated patients from 1 March 2017 to 1 October 2018. Results The OS was significantly improved in the DLCR post-approval cohort (n = 2055) compared to the pre-approval cohort (n = 1658). The 3-year OS rates were 18% (95% CI 15.6–20.0) and 6% (95% CI 5.1–7.4), respectively. On multivariable Cox regression, bone (HR = 1.63) and liver metastases (HR = 1.47), performance status (PS) 1 (HR = 1.86), and PS ≥ 2 (HR = 2.19) were significantly associated with poor OS in ICI-treated patients. Conclusion OS significantly improved in patients with advanced NSCLC after ICI implementation in Denmark. In ICI-treated patients, PS ≥ 1, and bone and liver metastases were associated with a worse prognosis

    Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy

    Get PDF
    Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a rare X-linked recessive disease caused by deficiency of the lysosomal enzyme iduronate-2-sulphatase, leading to progressive accumulation of glycosaminoglycans in nearly all cell types, tissues and organs. Clinical manifestations include severe airway obstruction, skeletal deformities, cardiomyopathy and, in most patients, neurological decline. Death usually occurs in the second decade of life, although some patients with less severe disease have survived into their fifth or sixth decade. Until recently, there has been no effective therapy for MPS II, and care has been palliative. Enzyme replacement therapy (ERT) with recombinant human iduronate-2-sulphatase (idursulfase), however, has now been introduced. Weekly intravenous infusions of idursulfase have been shown to improve many of the signs and symptoms and overall wellbeing in patients with MPS II. This paper provides an overview of the clinical manifestations, diagnosis and symptomatic management of patients with MPS II and provides recommendations for the use of ERT. The issue of treating very young patients and those with CNS involvement is also discussed. ERT with idursulfase has the potential to benefit many patients with MPS II, especially if started early in the course of the disease

    Genetic differentiation of European grayling (Thymallus thymallus) populations in Serbia, based on mitochondrial and nuclear DNA analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The structure and diversity of grayling (<it>Thymallus thymallus</it>) populations have been well studied in most of its native habitat; however the southernmost populations of the Balkan Peninsula remain largely unexplored. The purpose of this study was to assess the genetic diversity of Serbian grayling populations, detect the impact of stocking and provide guidelines for conservation and management.</p> <p>Methods</p> <p>Eighty grayling individuals were collected from four rivers (Ibar, Lim, Drina and Rzav). The mitochondrial DNA control region (CR; 595 bp of the 3'end and 74 bp of flanking tRNA) and the ATP6 gene (630 bp fragment) were sequenced for 20 individuals (five from each locality). In addition, all individuals were genotyped with 12 microsatellite loci. The diversity and structure of the populations as well as the recent and ancient population declines were studied using specialized software.</p> <p>Results</p> <p>We detected three new haplotypes in the mtDNA CR and four haplotypes in the ATP6 gene of which three had not been described before. Previously, one CR haplotype and two ATP6 gene haplotypes had been identified as allochthonous, originating from Slovenia. Reconstruction of phylogenetic relations placed the remaining two CR haplotypes from the River Danube drainage of Serbia into a new clade, which is related to the previously described sister Slovenian clade. These two clades form a new Balkan clade. Microsatellite marker analysis showed that all four populations are genetically distinct from each other without any sign of intra-population structure, although stocking of the most diverse population (Drina River) was confirmed by mtDNA analysis. Recent and historical population declines of Serbian grayling do not differ from those of other European populations.</p> <p>Conclusions</p> <p>Our study shows that (1) the Ibar, Lim and Drina Rivers grayling populations are genetically distinct from populations outside of Serbia and thus should be managed as native populations in spite of some introgression in the Drina River population and (2) the Rzav River population is not appropriate for further stocking activities since it originates from stocked Slovenian grayling. However, the Rzav River population does not represent an immediate danger to other populations because it is physically isolated from these.</p

    100 ancient genomes show repeated population turnovers in Neolithic Denmark.

    Get PDF
    Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales &lt;sup&gt;1-4&lt;/sup&gt; . However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution &lt;sup&gt;5-7&lt;/sup&gt; . Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet ( &lt;sup&gt;13&lt;/sup&gt; C and &lt;sup&gt;15&lt;/sup&gt; N content), mobility ( &lt;sup&gt;87&lt;/sup&gt; Sr/ &lt;sup&gt;86&lt;/sup&gt; Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use
    corecore