4 research outputs found

    A Homologous Bacterin Protects Sheep against Abortion Induced by a Hypervirulent Campylobacter jejuni Clone

    No full text
    Campylobacter jejuni clone SA has emerged as the predominant cause of ovine abortion outbreaks in the United States (US). Despite the fact that commercial Campylobacter vaccines are available, their efficacy in protecting abortion induced by C. jejuni clone SA is uncertain, and a protective vaccine is needed to control the disease. In this study, an experimental homologous bacterin (made of a clone SA isolate) and two commercial Campylobacter vaccines were evaluated for their protection against C. jejuni clone SA-induced sheep abortion. All vaccines induced high levels of antibodies against C. jejuni clone SA in pregnant ewes, but only the experimental homologous bacterin produced significant protection (80%). Immunoblotting showed that the experimental vaccine elicited more specific antibodies against C. jejuni clone SA. These findings strongly suggest the necessity of developing a homologous vaccine for the control C. jejuni clone SA induced abortion on sheep farms

    Effect of Danofloxacin Treatment on the Development of Fluoroquinolone Resistance in Campylobacter jejuni in Calves

    Get PDF
    Campylobacter is a leading cause of foodborne gastroenteritis. Recent studies have indicated a rise in fluoroquinolone-resistant (FQ-R) Campylobacter in cattle, where FQ is used to control bovine respiratory disease (BRD). To assess the effect of danofloxacin treatment on the development of FQ-resistance in C. jejuni, 30 commercial calves were divided into Group 1, Group 2, and Group 3 (n = 10), and were all inoculated orally with FQ-susceptible (FQ-S) C. jejuni; seven days later, Group 3 was challenged with transtracheal Mannheimia haemolytica, and one week later, Group 2 and Group 3 were injected subcutaneously with danofloxacin. Rectal feces were collected to determine relative percentages of FQ-R Campylobacter via culture. Before oral inoculation with C. jejuni, 87% of calves were naturally colonized by FQ-R C. jejuni. Two days after the inoculation, FQ-R C. jejuni decreased substantially in the majority of calves. Within 24 h of danofloxacin injection, almost all C. jejuni populations shifted to an FQ-R phenotype in both FQ-treated groups, which was only transitory, as FQ-S strains became predominant during later periods. Genotyping indicated that the spike seen in FQ-R C. jejuni populations following the injection was due mainly to enrichment of preexisting FQ-R C. jejuni, rather than development of de novo FQ resistance in susceptible strains. These results provide important insights into the dynamic changes of FQ-resistant Campylobacter in cattle in response to FQ treatment.This article is published as Goulart, Debora Brito, Ashenafi Feyisa Beyi, Zuowei Wu, Mehmet Cemal Adiguzel, Anastasia Schroeder, Kritika Singh, Changyun Xu et al. "Effect of Danofloxacin Treatment on the Development of Fluoroquinolone Resistance in Campylobacter jejuni in Calves." Antibiotics 11, no. 4 (2022): 531. DOI: 10.3390/antibiotics11040531. Copyright 2022 The Authors. Attribution 4.0 International (CC BY 4.0). Posted with permission

    Effect of Danofloxacin Treatment on the Development of Fluoroquinolone Resistance in <i>Campylobacter jejuni</i> in Calves

    No full text
    Campylobacter is a leading cause of foodborne gastroenteritis. Recent studies have indicated a rise in fluoroquinolone-resistant (FQ-R) Campylobacter in cattle, where FQ is used to control bovine respiratory disease (BRD). To assess the effect of danofloxacin treatment on the development of FQ-resistance in C. jejuni, 30 commercial calves were divided into Group 1, Group 2, and Group 3 (n = 10), and were all inoculated orally with FQ-susceptible (FQ-S) C. jejuni; seven days later, Group 3 was challenged with transtracheal Mannheimia haemolytica, and one week later, Group 2 and Group 3 were injected subcutaneously with danofloxacin. Rectal feces were collected to determine relative percentages of FQ-R Campylobacter via culture. Before oral inoculation with C. jejuni, 87% of calves were naturally colonized by FQ-R C. jejuni. Two days after the inoculation, FQ-R C. jejuni decreased substantially in the majority of calves. Within 24 h of danofloxacin injection, almost all C. jejuni populations shifted to an FQ-R phenotype in both FQ-treated groups, which was only transitory, as FQ-S strains became predominant during later periods. Genotyping indicated that the spike seen in FQ-R C. jejuni populations following the injection was due mainly to enrichment of preexisting FQ-R C. jejuni, rather than development of de novo FQ resistance in susceptible strains. These results provide important insights into the dynamic changes of FQ-resistant Campylobacter in cattle in response to FQ treatment

    Effect of Danofloxacin Treatment on the Development of Fluoroquinolone Resistance in Campylobacter jejuni in Calves

    No full text
    Campylobacter is a leading cause of foodborne gastroenteritis. Recent studies have indicated a rise in fluoroquinolone-resistant (FQ-R) Campylobacter in cattle, where FQ is used to control bovine respiratory disease (BRD). To assess the effect of danofloxacin treatment on the development of FQ-resistance in C. jejuni, 30 commercial calves were divided into Group 1, Group 2, and Group 3 (n = 10), and were all inoculated orally with FQ-susceptible (FQ-S) C. jejuni; seven days later, Group 3 was challenged with transtracheal Mannheimia haemolytica, and one week later, Group 2 and Group 3 were injected subcutaneously with danofloxacin. Rectal feces were collected to determine relative percentages of FQ-R Campylobacter via culture. Before oral inoculation with C. jejuni, 87% of calves were naturally colonized by FQ-R C. jejuni. Two days after the inoculation, FQ-R C. jejuni decreased substantially in the majority of calves. Within 24 h of danofloxacin injection, almost all C. jejuni populations shifted to an FQ-R phenotype in both FQ-treated groups, which was only transitory, as FQ-S strains became predominant during later periods. Genotyping indicated that the spike seen in FQ-R C. jejuni populations following the injection was due mainly to enrichment of preexisting FQ-R C. jejuni, rather than development of de novo FQ resistance in susceptible strains. These results provide important insights into the dynamic changes of FQ-resistant Campylobacter in cattle in response to FQ treatment
    corecore