5 research outputs found
Cross Talk between Expression of the Human T-Cell Leukemia Virus Type 1 Tax Transactivator and the Oncogenic bHLH Transcription Factor TAL1â–¿ â€
The human T-cell leukemia virus type 1 (HTLV-1) Tax transactivator is known to induce or repress various cellular genes, several of them encoding transcription factors. As Tax is known to deregulate various basic bHLH factors, we looked more specifically at its effect on TAL1 (T-cell acute lymphoblastic leukemia 1), also known as SCL (stem cell leukemia). Indeed, TAL1 is deregulated in a high percentage of T-cell acute lymphoblastic leukemia cells, and its oncogenic properties are well-established. Here we show that Tax induces transcription of this proto-oncogene by stimulating the activity of the TAL1 gene promoter 1b, through both the CREB and NF-κB pathways. It was also observed that TAL1 upregulates HTLV-1 promoter activity, in either the presence or the absence of Tax. The viral promoter is inhibited in trans by expression of the E2A protein E47, and TAL1 is able to abrogate this inhibition. These data show the existence of a positive feedback loop between Tax and TAL1 expression and support the notion that this proto-oncogene participates in generation of adult T-cell leukemia/lymphoma by increasing the amount of the Tax oncoprotein but also possibly by its own transforming activities
Cutting Edge: Regulator of G protein signaling-1 selectively regulates gut T cell trafficking and colitic potential
The Regulator of G Protein Signaling 1 [RGS1] gene is associated with celiac disease, multiple sclerosis (MS) and Type I diabetes (T1D), which are all T cell-mediated pathologies. And yet there is no reported analysis of RGS1 biology in human T cells. This study shows that RGS1 expression is substantially higher in T cells from human gut versus peripheral blood, and that this can be exaggerated in intestinal inflammation. Elevated RGS1 levels profoundly reduce T cell migration to lymphoid-homing chemokines, whereas RGS-1 depletion selectively enhances such chemotaxis in gut T cells, and impairs their colitogenic potential. These findings provide a revised framework in which to view the linkage of RGS1 to inflammatory disease