79 research outputs found

    Immunonutrition before esophagectomy: Impact on immune surveillance mechanisms

    Get PDF
    Preoperative oral immunonutrition was demonstrated to improve immune response and to decrease the infection rate in patients with cancer. This study aimed to assess how immunonutrition could influence the immune cell response in the mucosal microenvironment of esophageal adenocarcinoma. Therefore, A prospective cohort of consecutive patients undergoing esophagectomy for esophageal adenocarcinoma was enrolled. A subgroup of them was given preoperative oral immunonutrition with Oral Impact and was compared to those who received no preoperative supplementation. Mucosal samples from healthy esophagus were obtained at esophagectomy. Histology, immunohistochemistry, gene expression analysis, and cytofluorimetry were performed. Markers of activation of antigen-presenting cells (CD80, CD86, and HLA-I), innate immunity (TLR4 and MyD88), and cytotoxic lymphocyte infiltration and activation (CD8, CD38, CD69, and CD107) were measured. In all, 50 patients received preoperative Oral Impact and 129 patients received no nutritional support. CD80, CD86, MyD88, and CD69 messenger RNA expression was significantly increased in patients receiving immunonutrition compared to controls. In the subgroup of patients with stages I-II cancer, the rate of epithelial cells expressing CD80 and HLA-ABC was significantly higher in those receiving immunonutrition compared to controls as well as CD8+ CD28+ cell rate. Immunonutrition administration before surgery was significantly associated to increased degranulating CD8 and natural killer cells (CD107+) infiltrating the healthy esophageal mucosa. All the comparisons were adjusted for cancer stage and preoperative therapy. In conclusion, in healthy esophageal mucosa of patients undergoing esophagectomy, a 5-day course of immunonutrition enhances expression of antigen-presenting cells activity and increased CD8+ T cell activation and degranulating activity. Further studies are warranted to understand the clinical implication in terms of cancer recurrence

    Saccharomyces boulardii CNCM I-745 supplementation reduces gastrointestinal dysfunction in an animal model of IBS

    Get PDF
    We evaluated the effect of Saccharomyces boulardii CNCM I-745 on intestinal neuromuscular anomalies in an IBS-type mouse model of gastrointestinal motor dysfunctions elicited by Herpes Simplex Virus type 1 (HSV-1) exposure.Mice were inoculated intranasally with HSV-1 (102 PFU) or vehicle at time 0 and 4 weeks later by the intragastric (IG) route (108 PFU). Six weeks after IG inoculum, mice were randomly allocated to receive oral gavage with either S. boulardii (107 CFU/day) or vehicle. After 4 weeks the following were determined: a) intestinal motility using fluorescein-isothiocyanate dextran distribution in the gut, fecal pellet expulsion, stool water content, and distal colonic transit of glass beads; b) integrity of the enteric nervous system (ENS) by immunohistochemistry on ileal whole-mount preparations and western blot of protein lysates from ileal longitudinal muscle and myenteric plexus; c) isometric muscle tension with electric field and pharmacological (carbachol) stimulation of ileal segments; and d) intestinal inflammation by levels of tumor necrosis factor α, interleukin(IL)-1β, IL-10 and IL-4.S. boulardii CNCM I-745 improved HSV-1 induced intestinal dysmotility and alteration of intestinal transit observed ten weeks after IG inoculum of the virus. Also, the probiotic yeast ameliorated the structural alterations of the ENS induced by HSV-1 (i.e., reduced peripherin immunoreactivity and expression, increased glial S100β protein immunoreactivity and neuronal nitric oxide synthase level, reduced substance P-positive fibers). Moreover, S. boulardii CNCM I-745 diminished the production of HSV-1 associated pro-inflammatory cytokines in the myenteric plexus and increased levels of anti-inflammatory interleukins.S. boulardii CNCM I-745 ameliorated gastrointestinal neuromuscular anomalies in a mouse model of gut dysfunctions typically observed with irritable bowel syndrome

    Mismatch repair gene defects in sporadic colorectal cancer enhance immune surveillance

    Get PDF
    Background: There is evidence that colorectal cancers (CRC) with DNA mismatch repair deficiency (MMR-D) are associated with a better prognosis than the generality of large bowel malignancies. Since an active immune surveillance process has been demonstrated to influence CRC outcome, we investigated whether MMR-D can enhance the immune response in CRC. Patients and Methods: A group of 113 consecutive patients operated for CRC (42 stage I or II and 71 with stage III or IV) was retrospectively analyzed. The expression of MMR genes (MSH2, MLH1, MSH6 and PSM2) and co-stimulatory molecule CD80 was assessed by tissue microarray immunohistochemistry. In addition, tumor infiltrating mononuclear cells (TIMC) and T cell subpopulations (CD4, CD8, T-bet and FoxP-3) were quantified. The effect of specific siRNA (siMSH2, siMLH1, siMSH6 and siPSM2) transfection in HT29 on CD80 expression was quantified by flow cytometry. Non parametric statistics and survival analysis were used. Results: Patients with MMR-D showed a higher T-bet/CD4 ratio (p = 0.02), a higher rate of CD80 expression and CD8 lymphocyte infiltration compared to those with no MMR-D. Moreover, in the MMR-D group, the Treg marker FoxP-3 was not expressed (p = 0.05). MMR-D patients with stage I or II and T-bet expression had a significant better survival (p = 0.009). Silencing of MSH2, MLH1 and MSH6, but not PSM2, significantly increased the rate of CD80+ HT29 cells (p = 0.007, p = 0.023 and p = 0.015, respectively). Conclusions: CRC with MMR-D showed a higher CD80 expression, and CD8+ and Th1 T-cell infiltration. In vitro silencing of MSH2, MLH1 and MSH6 significantly increased CD80+ cell rate. These results suggest an enhanced immune surveillance mechanism in presence of MMR-D

    Herpes Simplex Virus Type 1 Engages Toll Like Receptor 2 to Recruit Macrophages During Infection of Enteric Neurons

    Get PDF
    Herpes simplex virus type 1 (HSV-1) is a widespread neurotropic pathogen responsible for a range of clinical manifestations. Inflammatory cell infiltrate is a common feature of HSV-1 infections and has been implicated in neurodegeneration. Therefore, viral recognition by innate immune receptors (i.e., TLR2) and the subsequent inflammatory response are now deemed key players in HSV-1 pathogenesis. In this study we infected with HSV-1 the enteric nervous system (ENS) of wild-type (WT) and TLR2 knock-out (TLR2ko) mice to investigate whether and how TLR2 participates in HSV-1 induced neuromuscular dysfunction. Our findings demonstrated viral specific transcripts suggestive of abortive replication in the ENS of both WT and TLR2ko mice. Moreover, HSV-1 triggered TLR2-MyD88 depend signaling in myenteric neurons and induced structural and functional alterations of the ENS. Gastrointestinal dysmotility was, however, less pronounced in TLR2ko as compared with WT mice. Interesting, HSV-1 caused up-regulation of monocyte chemoattractant protein-1 (CCL2) and recruitment of CD11b+ macrophages in the myenteric ganglia of WT but not TLR2ko mice. At the opposite, the myenteric plexuses of TLR2ko mice were surrounded by a dense infiltration of HSV-1 reactive CD3+CD8+INFγ+ lymphocytes. Indeed, depletion CD3+CD8+ cells by means of administration of anti-CD8 monoclonal antibody reduced neuromuscular dysfunction in TLR2ko mice infected with HSV-1. During HSV-1 infection, the engagement of TLR2 mediates production of CCL2 in infected neurons and coordinates macrophage recruitment. Bearing in mind these observations, blockage of TLR2 signaling could provide novel therapeutic strategies to support protective and specific T-cell responses and to improve neuromuscular dysfunction in pathogen-mediated alterations of the ENS

    Correction to: Effects of immune suppression for transplantation on inflammatory colorectal cancer progression (Oncogenesis, (2018), 7, 6, (46), 10.1038/s41389-018-0055-5)

    Get PDF
    At the time of publication, the html version of this paper contained an error; the authors Imerio Angriman and Lucrezia Furian were not tagged as equally contributing authors. This has now been fixed in the html version of the paper, the PDF was correct at the time of publication. Erratum for Effects of immune suppression for transplantation on inflammatory colorectal cancer progression. [Oncogenesis. 2018

    MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis

    Get PDF
    Abnormal levels of microRNA (miR)-155, which regulate inflammation and immune responses, have been demonstrated in the colonic mucosa of patients with inflammatory bowel diseases (IBD), although its role in disease pathophysiology is unknown. We investigated the role of miR-155 in the acquisition and maintenance of an activated phenotype by intestinal myofibroblasts (IMF), a key cell population contributing to mucosal damage in IBD. IMF were isolated from colonic biopsies of healthy controls, ulcerative colitis (UC) and Crohn's disease (CD) patients. MiR-155 in IMF was quantified by quantitative reverse transcription-PCR in basal condition and following exposure to TNF-alpha, interleukin (IL)-1 beta, lipopolysaccharide (LPS) or TGF-beta 1. The effects of miR-155 mimic or inhibitor transfection on cytokine release and suppressor of cytokine signaling 1 (SOCS1) expression were assessed by enzyme-linked immunosorbent assay and western blot, respectively. Regulation of the target gene SOCS1 expression by miR-155 was assessed using luciferase reporter construct. We found that miR-155 was significantly upregulated in UC as compared with control-and CD-derived IMF. Moreover, TNF-alpha and LPS, but not TGF-beta 1 and IL-1 beta, significantly increased miR-155 expression in IMF. Ectopic expression of miR-155 in control IMF augmented cytokines release, whereas it downregulated SOCS1 expression. MiR-155 knockdown in UC-IMF reduced cytokine production and enhanced SOCS1 expression. Luciferase reporter assay demonstrated that miR-155 directly targets SOCS1. Moreover, silencing of SOCS1 in control IMF significantly increased IL-6 and IL-8 release. In all, our data suggest that inflammatory mediators induce miR-155 expression in IMF of patients with UC. By downregulating the expression of SOCS1, miR-155 wires IMF inflammatory phenotype

    Colorectal cancer development is affected by the ECM molecule EMILIN-2 hinging on macrophage polarization via the TLR-4/MyD88 pathway

    Get PDF
    Background Colorectal cancer is one of the most frequent and deadly tumors. Among the key regulators of CRC growth and progression, the microenvironment has emerged as a crucial player and as a possible route for the development of new therapeutic opportunities. More specifically, the extracellular matrix acts directly on cancer cells and indirectly affecting the behavior of stromal and inflammatory cells, as well as the bioavailability of growth factors. Among the ECM molecules, EMILIN-2 is frequently down-regulated by methylation in CRC and the purpose of this study was to verify the impact of EMILIN-2 loss in CRC development and its possible value as a prognostic biomarker. Methods The AOM/DSS CRC protocol was applied to Emilin-2 null and wild type mice. Tumor development was monitored by endoscopy, the molecular analyses performed by IHC, IF and WB and the immune subpopulations characterized by flow cytometry. Ex vivo cultures of monocyte/macrophages from the murine models were used to verify the molecular pathways. Publicly available datasets were exploited to determine the CRC patients' expression profile; Spearman's correlation analyses and Cox regression were applied to evaluate the association with the inflammatory response; the clinical outcome was predicted by Kaplan-Meier survival curves. Pearson correlation analyses were also applied to a cohort of patients enrolled in our Institute. Results In preclinical settings, loss of EMILIN-2 associated with an increased number of tumor lesions upon AOM/DSS treatment. In addition, in the early stages of the disease, the Emilin-2 knockout mice displayed a myeloid-derived suppressor cells-rich infiltrate. Instead, in the late stages, lack of EMILIN-2 associated with a decreased number of M1 macrophages, resulting in a higher percentage of the tumor-promoting M2 macrophages. Mechanistically, EMILIN-2 triggered the activation of the Toll-like Receptor 4/MyD88/NF-kappa B pathway, instrumental for the polarization of macrophages towards the M1 phenotype. Accordingly, dataset and immunofluorescence analyses indicated that low EMILIN-2 expression levels correlated with an increased M2/M1 ratio and with poor CRC patients' prognosis. Conclusions These novel results indicate that EMILIN-2 is a key regulator of the tumor-associated inflammatory environment and may represent a promising prognostic biomarker for CRC patients

    Extracellular Vesicles Secreted by Mesenchymal Stromal Cells Exert Opposite Effects to Their Cells of Origin in Murine Sodium Dextran Sulfate-Induced Colitis

    Get PDF
    Several reports have described a beneficial effect of Mesenchymal Stromal Cells (MSCs) and of their secreted extracellular vesicles (EVs) in mice with experimental colitis. However, the effects of the two treatments have not been thoroughly compared in this model. Here, we compared the effects of MSCs and of MSC-EV administration in mice with colitis induced by dextran sulfate sodium (DSS). Since cytokine conditioning was reported to enhance the immune modulatory activity of MSCs, the cells were kept either under standard culture conditions (naïve, nMSCs) or primed with a cocktail of pro-inflammatory cytokines, including IL1β, IL6 and TNFα (induced, iMSCs). In our experimental conditions, nMSCs and iMSCs administration resulted in both clinical and histological worsening and was associated with pro-inflammatory polarization of intestinal macrophages. However, mice treated with iEVs showed clinico-pathological improvement, decreased intestinal fibrosis and angiogenesis and a striking increase in intestinal expression of Mucin 5ac, suggesting improved epithelial function. Moreover, treatment with iEVs resulted in the polarization of intestinal macrophages towards and anti-inflammatory phenotype and in an increased Treg/Teff ratio at the level of the intestinal lymph node. Collectively, these data confirm that MSCs can behave either as anti- or as pro-inflammatory agents depending on the host environment. In contrast, EVs showed a beneficial effect, suggesting a more predictable behavior, a safer therapeutic profile and a higher therapeutic efficacy with respect to their cells of origin.Fil: Tolomeo, Anna Maria. Fondazione Istituto di Ricerca Pediatrica Città della Speranza; Italia. Università di Padova; Italia. Consorzio per la Ricerca Sanitaria; ItaliaFil: Castagliuolo, Ignazio. Università di Padova; ItaliaFil: Piccoli, Martina. Fondazione Istituto di Ricerca Pediatrica Città della Speranza; ItaliaFil: Grassi, Michele. Università di Padova; ItaliaFil: Magarotto, Fabio. Fondazione Istituto di Ricerca Pediatrica Città della Speranza; Italia. Università di Padova; ItaliaFil: De Lazzari, Giada. Fondazione Istituto di Ricerca Pediatrica Città della Speranza; Italia. Consorzio per la Ricerca Sanitaria; Italia. Università di Padova; ItaliaFil: Malvicini, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina. Consorzio per la Ricerca Sanitaria; Italia. Fondazione Istituto di Ricerca Pediatrica Città della Speranza; ItaliaFil: Caicci, Federico. Università di Padova; ItaliaFil: Franzin, Chiara. Fondazione Istituto di Ricerca Pediatrica Città della Speranza; ItaliaFil: Scarpa, Melania. Veneto Institute of Oncology; ItaliaFil: Macchi, Veronica. Università di Padova; ItaliaFil: De Caro, Raffaele. Università di Padova; Italia. Consorzio Per la Ricerca Sanitaria; ItaliaFil: Angriman, Imerio. Università di Padova; ItaliaFil: Viola, Antonella. Università di Padova; ItaliaFil: Porzionato, Andrea. Consorzio Per la Ricerca Sanitaria; Italia. Università di Padova; ItaliaFil: Pozzobon, Michela. Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza; Italia. Università di Padova; ItaliaFil: Muraca, Maurizio. Università di Padova; Italia. Consorzio Per la Ricerca Sanitaria; Italia. Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza; Itali

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF
    • …
    corecore