2 research outputs found

    Phenotypic and Genotypic Characterization of Newly Isolated <i>Xanthomonas euvesicatoria</i>-Specific Bacteriophages and Evaluation of Their Biocontrol Potential

    No full text
    Bacteriophages have greatly engaged the attention of scientists worldwide due to the continuously increasing resistance of phytopathogenic bacteria to commercially used chemical pesticides. However, the knowledge regarding phages is still very insufficient and must be continuously expanded. This paper presents the results of the isolation, characterization, and evaluation of the potential of 11 phage isolates as natural predators of a severe phytopathogenic bacterium—Xanthomonas euvesicatoria. Phages were isolated from the rhizosphere of tomato plants with symptoms of bacterial spot. The plaque morphology of all isolates was determined on a X. euvesicatoria lawn via a plaque assay. Three of the isolates were attributed to the family Myoviridae based on TEM micrographs. All phages showed good long-term viability when stored at 4 °C and −20 °C. Three of the phage isolates possessed high stability at very low pH values. Fifty-five-day persistence in a soil sample without the presence of the specific host and a lack of lytic activity on beneficial rhizosphere bacteria were found for the phage isolate BsXeu269p/3. The complete genome of the same isolate was sequenced and analyzed, and, for the first time in this paper, we report a circular representation of a linear but circularly permuted phage genome among known X. euvesicatoria phage genomes

    Cross-Over Pathogenic Bacteria Detected in Infected Tomatoes (Solanum lycopersicum L.) and Peppers (Capsicum annuum L.) in Bulgaria

    No full text
    The ability of certain human pathogens to adapt to plants without losing their virulence toward people is a major concern today. Thus, the aim of the present work was the investigation of the presence of cross-over pathogenic bacteria in infected tomato and pepper plants. The objects of the study were 21 samples from seven different parts of the plants and three from tomato rhizosphere. In total, 26 strains were isolated, identified by MALDI-TOF, and phenotypically characterized. The PCR amplification of the rpoB gene was applied as an approach for the rapid detection of cross-over pathogens in plant samples. A great bacterial diversity was revealed from tomato samples as nine species were identified (Leclercia adecarboxylata, Pseudesherichia vulneris, Enterobacter cancerogenus, Enterobacter cloacae, Enterobacter bugandensis, Acinetobacter calcoaceticus, Pantoea agglomerans, Pantoea ananatis, and Pectobacterium carotovorum). Polymicrobial contaminations were observed in samples T2 (tomato flower) and T10 (tomato fruit). Five species were identified from pepper samples (P. agglomerans, L. adecarboxylata, Pseudomonas sp., Pseudomonas putida, and Enterococcus sp.). Antibiotic resistance patterns were assigned in accordance with EFSA recommendations. All isolates showed varying resistance to the tested antibiotics. The genetic basis for the phenotypic antibiotic resistance was not revealed. No genes for the virulence factors were found among the population. To our knowledge, this is the first overall investigation of tomato and pepper cross-over pathogenic bacterial populations in Bulgaria
    corecore