625 research outputs found
The influence of microstructure on the performance of white porcelain stoneware
In the last years polished white porcelain stoneware tiles, coupling the smooth and glossy surface with the increased body whiteness, get a prominent role on the market. The bright white colour is obtained by adding noteworthy quantity of opacifiers, such as zircon, corundum and spinel. To better understand the complex relationships among the microstructure and the mechanical, tribological and functional behaviour of this class of products, four polished white porcelain stoneware tiles were selected and thoroughly characterized by a wide spectrum of chemico-physical and microstructural analyses. Products exhibit excellent mechanical properties (flexural strength, Young modulus, fracture toughness) with a clear dependence of these properties on porosity and phase composition. Mullite and zircon tend to increase the mechanical performances, through a predominant mechanism of matrix reinforcement, while quartz plays an opposite role
The role of surface microstructure on the resistance to stains of porcelain stoneware tiles
Porcelain stoneware tiles frequently undergo a polishing process, aimed at improving their aesthetical appearence, that brings about a consistent material removal, with formation of superficial defects and opening of closed pores. The consequent degradation of surface characteristics and especially the increased sensitivity to stains-represent the main limit to the use of polished tiles in many indoor and outdoor applications. In order to better understand the role of microstructure on the resistance to stains, a phenomenological study of staining/cleaning operations (ISO 10545 parts 14 and 16) and a thoroughful physico-microstructural characterisation of tile working surfaces (SEM, open and closed porosity, rugosimetry, MIP) were carried out on twelve industrially manufactured and polished products. Diverse staining behaviours proved to be connected with different tile micro structures, being the surface roughness as well as the amount and shape of coarser pores the most influent variables. Through a statistical approach, an empirical predictional model of the amount of stain retained by the tile surface after mild washing with warm water was set up. It is based on roughness measurements (both R-a and R-t), estimation of macropores (i.e. 1-50 mum by MIP) and pore roundness (by image analysis of SEM photomicrographs
Toughening of complete solid solution cermets by graphite addition
(Ti0.95Ta0.05)(C0.5N0.5)-Co complete solid solution cermets (CSCs) were developed by a mechanochemical synthesis process and a pressureless sintering method. The effect of different percentages of graphite used as a sintering additive on the nature of the binder phase and the mechanical properties of the cermets was investigated. Microstructural and mechanical characterisations were carried out by X-ray diffraction, optical microscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Vickers hardness, indentation fracture toughness and nanoindentation. The addition of graphite modified the carbon activity during sintering, reducing the dissolution of carbonitride ceramic particles into the molten binder. The amount of Ti and Ta remaining in the binder after sintering gradually decreased as the amount of graphite added increased, which induced a change in the nature of the binder phase. When no graphite was added, the binder consisted of the brittle TixTa1-xCo2 intermetallic phase. With the increase in the amount of graphite added, the formation of more ductile phases, such as TixTa1-xCo3 and α-Co, was observed, causing a significant improvement in the toughness of the cermets.Peer reviewe
Evidence for energy injection and a fine-tuned central engine at optical wavelengths in GRB 070419A
We present a comprehensive multiwavelength temporal and spectral analysis of
the FRED GRB 070419A. The early-time emission in the -ray and X-ray
bands can be explained by a central engine active for at least 250 s, while at
late times the X-ray light curve displays a simple power-law decay. In
contrast, the observed behaviour in the optical band is complex (from 10 up
to 10 s). We investigate the light curve behaviour in the context of the
standard forward/reverse shock model; associating the peak in the optical light
curve at 450 s with the fireball deceleration time results in a Lorenz
factor at this time. In contrast, the shallow optical
decay between 450 and 1500 s remains problematic, requiring a reverse shock
component whose typical frequency is above the optical band at the optical peak
time for it to be explained within the standard model. This predicts an
increasing flux density for the forward shock component until t 4
10 s, inconsistent with the observed decay of the optical emission
from t 10 s. A highly magnetized fireball is also ruled out due to
unrealistic microphysic parameters and predicted light curve behaviour that is
not observed. We conclude that a long-lived central engine with a finely tuned
energy injection rate and a sudden cessation of the injection is required to
create the observed light curves - consistent with the same conditions that are
invoked to explain the plateau phase of canonical X-ray light curves of GRBs.Comment: 9 pages, 10 figures, accepted for publication in MNRA
The circumburst environment of a FRED GRB: study of the prompt emission and X-ray/optical afterglow of GRB 051111
We report a multi-wavelength analysis of the prompt emission and early
afterglow of GRB051111 and discuss its properties in the context of current
fireball models. The detection of GRB051111 by the Burst Alert Telescope
on-board Swift triggered early BVRi' observations with the 2-m robotic Faulkes
Telescope North in Hawaii, as well as X-ray observations with the Swift X-Ray
Telescope. The prompt gamma-ray emission shows a classical FRED profile. The
optical afterglow light curves are fitted with a broken power law, with
alpha_1=0.35 to alpha_2=1.35 and a break time around 12 minutes after the GRB.
Although contemporaneous X-ray observations were not taken, a power law
connection between the gamma-ray tail of the FRED temporal profile and the late
XRT flux decay is feasible. Alternatively, if the X-ray afterglow tracks the
optical decay, this would represent one of the first GRBs for which the
canonical steep-shallow-normal decay typical of early X-ray afterglows has been
monitored optically. We present a detailed analysis of the intrinsic
extinction, elemental abundances and spectral energy distribution. From the
absorption measured in the low X-ray band we find possible evidence for an
overabundance of some alpha elements such as oxygen, [O/Zn]=0.7+/-0.3, or,
alternatively, for a significant presence of molecular gas. The IR-to-X-ray
Spectral Energy Distribution measured at 80 minutes after the burst is
consistent with the cooling break lying between the optical and X-ray bands.
Extensive modelling of the intrinsic extinction suggests dust with big grains
or grey extinction profiles. The early optical break is due either to an energy
injection episode or, less probably, to a stratified wind environment for the
circumburst medium.Comment: accepted to A&A on Nov. 10 (14 pages, 8 figures
Short GRBs at the dawn of the gravitational wave era
We derive the luminosity function and redshift distribution of short Gamma
Ray Bursts (SGRBs) using (i) all the available observer-frame constraints (i.e.
peak flux, fluence, peak energy and duration distributions) of the large
population of Fermi SGRBs and (ii) the rest-frame properties of a complete
sample of Swift SGRBs. We show that a steep with a>2.0
is excluded if the full set of constraints is considered. We implement a Monte
Carlo Markov Chain method to derive the and functions
assuming intrinsic Ep-Liso and Ep-Eiso correlations or independent
distributions of intrinsic peak energy, luminosity and duration. To make our
results independent from assumptions on the progenitor (NS-NS binary mergers or
other channels) and from uncertainties on the star formation history, we assume
a parametric form for the redshift distribution of SGRBs. We find that a
relatively flat luminosity function with slope ~0.5 below a characteristic
break luminosity ~3 erg/s and a redshift distribution of SGRBs
peaking at z~1.5-2 satisfy all our constraints. These results hold also if no
Ep-Liso and Ep-Eiso correlations are assumed. We estimate that, within ~200 Mpc
(i.e. the design aLIGO range for the detection of GW produced by NS-NS merger
events), 0.007-0.03 SGRBs yr should be detectable as gamma-ray events.
Assuming current estimates of NS-NS merger rates and that all NS-NS mergers
lead to a SGRB event, we derive a conservative estimate of the average opening
angle of SGRBs: ~3-6 deg. Our luminosity function implies an
average luminosity L~1.5 erg/s, nearly two orders of magnitude
higher than previous findings, which greatly enhances the chance of observing
SGRB "orphan" afterglows. Efforts should go in the direction of finding and
identifying such orphan afterglows as counterparts of GW events.Comment: 13 pages, 5 figures, 2 tables. Accepted for publication in Astronomy
& Astrophysics. Figure 5 and angle ranges corrected in revised versio
The Afterglow and Environment of the Short GRB111117A
We present multi-wavelength observations of the afterglow of the short
GRB111117A, and follow-up observations of its host galaxy. From rapid optical
and radio observations we place limits of r \gtrsim 25.5 mag at \deltat \approx
0.55 d and F_nu(5.8 GHz) < 18 \muJy at \deltat \approx 0.50 d, respectively.
However, using a Chandra observation at t~3.0 d we locate the absolute position
of the X-ray afterglow to an accuracy of 0.22" (1 sigma), a factor of about 6
times better than the Swift-XRT position. This allows us to robustly identify
the host galaxy and to locate the burst at a projected offset of 1.25 +/- 0.20"
from the host centroid. Using optical and near-IR observations of the host
galaxy we determine a photometric redshift of z=1.3 (+0.3,-0.2), one of the
highest for any short GRB, and leading to a projected physical offset for the
burst of 10.5 +/- 1.7 kpc, typical of previous short GRBs. At this redshift,
the isotropic gamma-ray energy is E_{gamma,iso} \approx 3\times10^51 erg
(rest-frame 23-2300 keV) with a peak energy of E_{pk} \approx 850-2300 keV
(rest-frame). In conjunction with the isotropic X-ray energy, GRB111117A
appears to follow our recently-reported E_x,iso-E_gamma,iso-E_pk universal
scaling. Using the X-ray data along with the optical and radio non-detections
we find that for a blastwave kinetic energy of E_{K,iso} \approx E_{gamma,iso},
the circumburst density is n_0 \sim 3x10^(-4)-1 cm^-3 (for a range of
epsilon_B=0.001-0.1). Similarly, from the non-detection of a break in the X-ray
light curve at t<3 d, we infer a minimum opening angle for the outflow of
theta_j> 3-10 degrees (depending on the circumburst density). We conclude that
Chandra observations of short GRBs are effective at determining precise
positions and robust host galaxy associations in the absence of optical and
radio detections.Comment: ApJ accepted versio
Immunological analytical techniques for cosmetics quality control and process monitoring
Cosmetics analysis represents a rapidly expanding field of analytical chemistry as new cosmetic formulations are increasingly in demand on the market and the ingredients required for their production are constantly evolving. Each country applies strict legislation regarding substances in the final product that must be prohibited or regulated. To verify the compliance of cosmetics with current regulations, official analytical methods are available to reveal and quantitatively determine the analytes of interest. However, since ingredients, and the lists of regulated/prohibited substances, rapidly change, dedicated analytical methods must be developed ad hoc to fulfill the new requirements. Research focuses on finding innovative techniques that allow a rapid, inexpensive, and sensitive detection of the target analytes in cosmetics. Among the different methods proposed, immunological techniques are gaining interest, as they make it possible to carry out low-cost analyses on raw materials and finished products in a relatively short time. Indeed, immunoassays are based on the specific and selective antibody/antigen reaction, and they have been extensively applied for clinical diagnostic, alimentary quality control and environmental security purposes, and even for routine analysis. Since the complexity and variability of the matrices, as well as the great variety of compounds present in cosmetics, are analogous with those from food sources, immunological methods could also be applied successfully in this field. Indeed, this would provide a valid approach for the monitoring of industrial production chains even in developing countries, which are currently the greatest producers of cosmetics and the major exporters of raw materials. This review aims to highlight the immunological techniques proposed for cosmetics analysis, focusing on the detection of prohibited/regulated compounds, bacteria and toxins, and allergenic substances, and the identification of counterfeits
The host-galaxy response to the afterglow of GRB 100901A
For Gamma-Ray Burst 100901A, we have obtained Gemini-North and Very Large
Telescope optical afterglow spectra at four epochs: one hour, one day, three
days and one week after the burst, thanks to the afterglow remaining unusually
bright at late times. Apart from a wealth of metal resonance lines, we also
detect lines arising from fine-structure levels of the ground state of Fe II,
and from metastable levels of Fe II and Ni II at the host redshift (z =
1.4084). These lines are found to vary significantly in time. The combination
of the data and modelling results shows that we detect the fall of the Ni II 4
F9/2 metastable level population, which to date has not been observed. Assuming
that the population of the excited states is due to the UV-radiation of the
afterglow, we estimate an absorber distance of a few hundred pc. This appears
to be a typical value when compared to similar studies. We detect two
intervening absorbers (z = 1.3147, 1.3179). Despite the wide temporal range of
the data, we do not see significant variation in the absorption lines of these
two intervening systems.Comment: 17 pages, 9 figures. Accepted by Monthly Notices of the Royal
Astronomical Society on Jan 11th 201
- …