722 research outputs found

    Afterglows from precursors in Gamma Ray Bursts. Application to the optical afterglow of GRB 091024

    Full text link
    About 15% of Gamma Ray Bursts have precursors, i.e. emission episodes preceding the main event, whose spectral and temporal properties are similar to the main emission. We propose that precursors have their own fireball, producing afterglow emission due to the dissipation of the kinetic energy via external shock. In the time lapse between the precursor and the main event, we assume that the central engine is not completely turned off, but it continues to eject relativistic material at a smaller rate, whose emission is below the background level. The precursor fireball generates a first afterglow by the interaction with the external circumburst medium. Matter injected by the central engine during the "quasi-quiescent" phase replenishes the external medium with material in relativistic motion. The fireball corresponding to the main prompt emission episode crashes with this moving material, producing a second afterglow, and finally catches up and merges with the first precursor fireball. We apply this new model to GRB 091024, an event with a precursor in the prompt light curve and two well defined bumps in the optical afterglow, obtaining an excellent agreement with the existing data.Comment: 11 pages, 6 figures, 3 tables. Accepted for publication in MNRAS, Main Journa

    GRB 140206A: the most distant polarized Gamma-Ray Burst

    Full text link
    The nature of the prompt gamma-ray emission of Gamma-Ray Bursts (GRBs) is still far from being completely elucidated. The measure of linear polarization is a powerful tool that can be used to put further constraints on the content and magnetization of the GRB relativistic outflows, as well as on the radiation processes at work. To date only a handful of polarization measurements are available for the prompt emission of GRBs. Here we present the analysis of the prompt emission of GRB 140206A, obtained with INTEGRAL/IBIS, Swift/BAT, and Fermi/GBM. Using INTEGRAL/IBIS as a Compton polarimeter we were able to constrain the linear polarization level of the second peak of this GRB as being larger than 28% at 90% c.l. We also present the GRB afterglow optical spectroscopy obtained at the Telescopio Nazionale Galileo (TNG), which allowed us the measure the distance of this GRB, z=2.739. This distance value together with the polarization measure obtained with IBIS, allowed us to derive the deepest and most reliable limit to date (xi <1x10-16) on the possibility of Lorentz Invariance Violation, measured through the vacuum birefringence effect on a cosmological source.Comment: 9 pages, 5 figures, 3 tables, accepted for publication in MNRAS. arXiv admin note: text overlap with arXiv:1303.418

    The faster the narrower: characteristic bulk velocities and jet opening angles of Gamma Ray Bursts

    Full text link
    The jet opening angle theta_jet and the bulk Lorentz factor Gamma_0 are crucial parameters for the computation of the energetics of Gamma Ray Bursts (GRBs). From the ~30 GRBs with measured theta_jet or Gamma_0 it is known that: (i) the real energetic E_gamma, obtained by correcting the isotropic equivalent energy E_iso for the collimation factor ~theta_jet^2, is clustered around 10^50-10^51 erg and it is correlated with the peak energy E_p of the prompt emission and (ii) the comoving frame E'_p and E'_gamma are clustered around typical values. Current estimates of Gamma_0 and theta_jet are based on incomplete data samples and their observed distributions could be subject to biases. Through a population synthesis code we investigate whether different assumed intrinsic distributions of Gamma_0 and theta_jet can reproduce a set of observational constraints. Assuming that all bursts have the same E'_p and E'_gamma in the comoving frame, we find that Gamma_0 and theta_jet cannot be distributed as single power-laws. The best agreement between our simulation and the available data is obtained assuming (a) log-normal distributions for theta_jet and Gamma_0 and (b) an intrinsic relation between the peak values of their distributions, i.e theta_jet^2.5*Gamma_0=const. On average, larger values of Gamma_0 (i.e. the "faster" bursts) correspond to smaller values of theta_jet (i.e. the "narrower"). We predict that ~6% of the bursts that point to us should not show any jet break in their afterglow light curve since they have sin(theta_jet)<1/Gamma_0. Finally, we estimate that the local rate of GRBs is ~0.3% of all local SNIb/c and ~4.3% of local hypernovae, i.e. SNIb/c with broad-lines.Comment: 15 pages, 8 figures, 1 table. Accepted for publication in MNRA

    The X-ray absorbing column density of a complete sample of bright Swift Gamma-Ray Bursts

    Full text link
    A complete sample of bright Swift Gamma-ray Bursts (GRBs) has been recently selected by Salvaterra et al. (2011). The sample has a high level of completeness in redshift (91%). We derive here the intrinsic absorbing X-ray column densities of these GRBs making use of the Swift X-ray Telescope data. This distribution has a mean value of log(NH/cm-2)=21.7+-0.5. This value is consistent with the distribution of the column densities derived from the total sample of GRBs with redshift. We find a mild increase of the intrinsic column density with redshift. This can be interpreted as due to the contribution of intervening systems along the line of sight. Making use of the spectral index connecting optical and X-ray fluxes at 11 hr (beta_OX), we investigate the relation of the intrinsic column density and the GRB `darkness'. We find that there is a very tight correlation between dark GRBs and high X-ray column densities. This clearly indicates that the dark GRBs are formed in a metal-rich environment where dust must be present.Comment: MNRAS, 6 pages, 3 figures, 1 tabl

    Optical and X-ray Rest-frame Light Curves of the BAT6 sample

    Get PDF
    We present the rest-frame light curves in the optical and X-ray bands of an unbiased and complete sample of Swift long Gamma-Ray Bursts (GRBs), namely the BAT6 sample. The unbiased BAT6 sample (consisting of 58 events) has the highest level of completeness in redshift (\sim 95%), allowing us to compute the rest-frame X-ray and optical light curves for 55 and 47 objects, respectively. We compute the X-ray and optical luminosities accounting for any possible source of absorption (Galactic and intrinsic) that could affect the observed fluxes in these two bands. We compare the behaviour observed in the X-ray and in the optical bands to assess the relative contribution of the emission during the prompt and afterglow phases. We unarguably demonstrate that the GRBs rest-frame optical luminosity distribution is not bimodal, being rather clustered around the mean value Log(LR_{R}) = 29.9 ±\pm 0.8 when estimated at a rest frame time of 12 hr. This is in contrast with what found in previous works and confirms that the GRB population has an intrinsic unimodal luminosity distribution. For more than 70% of the events the rest-frame light curves in the X-ray and optical bands have a different evolution, indicating distinct emitting regions and/or mechanisms. The X-ray light curves normalised to the GRB isotropic energy (Eiso_{\rm iso}), provide evidence for X-ray emission still powered by the prompt emission until late times (\sim hours after the burst event). On the other hand, the same test performed for the Eiso_{\rm iso}-normalised optical light curves shows that the optical emission is a better proxy of the afterglow emission from early to late times.Comment: Accepted for publication in A&A: 10 pages, 5 figures, 2 table

    GRB orphan afterglows in present and future radio transient surveys

    Full text link
    Orphan Afterglows (OA) are slow transients produced by Gamma Ray Bursts seen off-axis that become visible on timescales of days/years at optical/NIR and radio frequencies, when the prompt emission at high energies (X and gamma rays) has already ceased. Given the typically estimated jet opening angle of GRBs theta_jet ~ 3 deg, for each burst pointing to the Earth there should be a factor ~ 700 more GRBs pointing in other directions. Despite this, no secure OAs have been detected so far. Through a population synthesis code we study the emission properties of the population of OA at radio frequencies. OAs reach their emission peak on year-timescales and they last for a comparable amount of time. The typical peak fluxes (which depend on the observing frequency) are of few micro Jy in the radio band with only a few OA reaching the mJy level. These values are consistent with the upper limits on the radio flux of SN Ib/c observed at late times. We find that the OA radio number count distribution has a typical slope -1.7 at high fluxes and a flatter (-0.4) slope at low fluxes with a break at a frequency-dependent flux. Our predictions of the OA rates are consistent with the (upper) limits of recent radio surveys and archive searches for radio transients. Future radio surveys like VAST/ASKAP at 1.4 GHz should detect ~ 3x10^-3 OA deg^-2 yr-1, MeerKAT and EVLA at 8.4 GHz should see ~ 3x10^-1 OA deg-2 yr-1. The SKA, reaching the micro Jy flux limit, could see up to ~ 0.2-1.5 OA deg^-2 yr^-1. These rates also depend on the duration of the OA above a certain flux limit and we discuss this effect with respect to the survey cadence.Comment: (10 pages, 5 figures, 1 table) Accepted for publication by PAS
    corecore