10 research outputs found

    Detrimental effects of the 'bath salt' methylenedioxypyrovalerone on social play behavior in male rats

    Get PDF
    Methylenedioxypyrovalerone (MDPV) is the most popular synthetic cathinone found in products marketed as 'bath salts', widely abused among teenagers and young adults. Synthetic cathinones have pharmacological effects resembling those of psychostimulants, which are known to disrupt a variety of social behaviors. However, despite the popular use of MDPV by young people in social contexts, information about its effects on social behavior is scarce. To investigate the impact of MDPV on social behavior at young age, and the underlying neurobehavioral mechanisms, we focused on social play behavior. Social play behavior is the most characteristic social behavior displayed by young mammals and it is crucial for neurobehavioral development. Treatment with MDPV reduced social play behavior in both juvenile and young adult male rats, and its play-suppressant effect was subject to tolerance but not sensitization. As the behavioral effects of MDPV have been ascribed to dopaminergic and noradrenergic neurotransmission, and given the role of these neurotransmitters in social play, we investigated the involvement of dopamine and noradrenaline in the play-suppressant effects of MDPV. The effects of MDPV on social play were blocked by either the α2 adrenoceptor antagonist RX821002 or the dopamine receptor antagonist flupenthixol, given alone or together at sub-effective doses. In sum, MDPV selectively suppresses the most vigorous social behavior of developing rats through both noradrenergic and dopaminergic mechanisms. This study provides important preclinical evidence of the deleterious effects of MDPV on social behavior, and as such increases our understanding of the neurobehavioral effects of this popular cathinone

    Modelling fragile X syndrome in the laboratory setting: A behavioral perspective

    No full text
    Fragile X syndrome is the most common form of inherited mental retardation and the most frequent monogenic cause of syndromic autism spectrum disorders. The syndrome is caused by the loss of the Fragile X Mental Retardation Protein (FMRP), a key RNA-binding protein involved in synaptic plasticity and neuronal morphology. Patients show intellectual disability, social deficits, repetitive behaviors and impairments in social communication. The aim of this review is to outline the importance of behavioral phenotyping of animal models of FXS from a developmental perspective, by showing how the behavioral characteristics of FXS at the clinical level can be translated into effective, developmentally-specific and clinically meaningful behavioral readouts in the laboratory setting. After introducing the behavioral features, diagnostic criteria and off-label pharmacotherapy of FXS, we outline how FXS-relevant behavioral features can be modelled in laboratory animals in the course of development: we review the progress to date, discuss how behavioral phenotyping in animal models of FXS is essential to identify potential treatments, and discuss caveats and future directions in this research field

    Testing the correlation between experimentally-induced hypothyroidism during pregnancy and autistic-like symptoms in the rat offspring

    No full text
    Thyroid hormones are important for the development of the central nervous system. Since the fetal thyroid gland is not functioning until mid-gestation, transport of maternal thyroid hormones across the placenta is essential during the early phases of gestation. Maternal thyroid deficiency has been associated with a higher incidence of neurodevelopmental disorders in the newborns. The relationship between maternal hypothyroidism and the onset of autism spectrum disorders (ASD) in the offspring, however, is still debated. To address this issue, we used a validated animal model of prenatal hypothyroidism based on the administration of the thyroid peroxidase inhibitor methimazole (MMI, 0.02 g/100 ml in tap water) to rat dams from gestational day 9 up to delivery. The offspring was tested in behavioral tasks during infancy (PNDs 5, 9, 13) and adolescence (PND 35-40) to capture some of the core and associated symptoms of ASD. MMI-exposed pups were able to vocalize as controls when separated from the nest, and showed intact social discrimination abilities in the homing behavior test. At adolescence, the offspring from both sexes did not show an anxious-phenotype in the elevated plus maze and showed intact object recognition. However, MMI-exposed male rats showed increased novelty-directed exploratory behaviors: they solicited their partner to play more and showed more interest for novel rather than familiar objects compared to control rats. Our results show that prenatal MMI-induced hypothyroidism does not cause in the rat offspring behaviors that resemble core and associated ASD symptoms, like deficits in communication and social interaction and anxiety

    Impaired repair of DNA damage is associated with autistic-like traits in rats prenatally exposed to valproic acid

    No full text
    Prenatal exposure to the antiepileptic and mood stabilizer valproic acid (VPA) is an environmental risk factor for autism spectrum disorders (ASD), although recent epidemiological studies show that the public awareness of this association is still limited. Based on the clinical findings, prenatal VPA exposure in rodents is a widely used preclinical model of ASD. However, there is limited information about the precise biochemical mechanisms underlying the link between ASD and VPA. Here, we tested the effects of increasing doses of VPA on behavioral features resembling core and secondary symptoms of ASD in rats. Only when administered prenatally at the dose of 500mg/kg, VPA induced deficits in communication and social discrimination in rat pups, and altered social behavior and emotionality in the adolescent and adult offspring in the absence of gross malformations. This dose of VPA inhibited histone deacetylase in rat embryos and favored the formation of DNA double strand breaks (DSB), but impaired their repair. The defective DSB response was no more visible in one-day-old pups, thus supporting the hypothesis that unrepaired VPA-induced DNA damage at the time of neural tube closure may underlie the autistic-like traits displayed in the course of development by rats prenatally exposed to VPA. These experiments help to understand the neurodevelopmental trajectories affected by prenatal VPA exposure and identify a biochemical link between VPA exposure during gestation and ASD

    Reward-Related Behavioral, Neurochemical and Electrophysiological Changes in a Rat Model of Autism Based on Prenatal Exposure to Valproic Acid

    No full text
    Prenatal exposure to the antiepileptic drug valproic acid (VPA) induces autism spectrum disorder (ASD) in humans and autistic-like behaviors in rodents, which makes it a good model to study the neural underpinnings of ASD. Rats prenatally exposed to VPA show profound deficits in the social domain. The altered social behavior displayed by VPA-exposed rats may be due to either a deficit in social reward processing or to a more general inability to properly understand and respond to social signals. To address this issue, we performed behavioral, electrophysiological and neurochemical experiments and tested the involvement of the brain reward system in the social dysfunctions displayed by rats prenatally exposed to VPA (500 mg/kg). We found that, compared to control animals, VPA-exposed rats showed reduced play responsiveness together with impaired sociability in the three-chamber test and altered social discrimination abilities. In addition, VPA-exposed rats showed altered expression of dopamine receptors together with inherent hyperexcitability of medium spiny neurons (MSNs) in the nucleus accumbens (NAc). However, when tested for socially-induced conditioned place preference, locomotor response to amphetamine and sucrose preference, control and VPA-exposed rats performed similarly, indicating normal responses to social, drug and food rewards. On the basis of the results obtained, we hypothesize that social dysfunctions displayed by VPA-exposed rats are more likely caused by alterations in cognitive aspects of the social interaction, such as the interpretation and reciprocation of social stimuli and/or the ability to adjust the social behavior of the individual to the changing circumstances in the social and physical environment, rather than to inability to enjoy the pleasurable aspects of the social interaction. The observed neurochemical and electrophysiological alterations in the NAc may contribute to the inability of VPA-exposed rats to process and respond to social cues, or, alternatively, represent a compensatory mechanism towards VPA-induced neurodevelopmental insults

    Phosphodiesterase 2A inhibition corrects the aberrant behavioral traits observed in genetic and environmental preclinical models of Autism Spectrum Disorder

    No full text
    Pharmacological inhibition of phosphodiesterase 2A (PDE2A), which catalyzes the hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), has recently been proposed as a novel therapeutic tool for Fragile X Syndrome (FXS), the leading monogenic cause of Autism Spectrum Disorder (ASD). Here, we investigated the role of PDE2A in ASD pathogenesis using two rat models that reflect one of either the genetic or environmental factors involved in the human disease: the genetic Fmr1-Δexon 8 rat model and the environmental rat model based on prenatal exposure to valproic acid (VPA, 500 mg/kg). Prior to behavioral testing, the offspring was treated with the PDE2A inhibitor BAY607550 (0.05 mg/kg at infancy, 0.1 mg/kg at adolescence and adulthood). Socio-communicative symptoms were assessed in both models through the ultrasonic vocalization test at infancy and three-chamber test at adolescence and adulthood, while cognitive impairments were assessed by the novel object recognition test in Fmr1-Δexon 8 rats (adolescence and adulthood) and by the inhibitory avoidance test in VPA-exposed rats (adulthood). PDE2A enzymatic activity in VPA-exposed infant rats was also assessed. In line with the increased PDE2A enzymatic activity previously observed in the brain of Fmr1-KO animals, we found an altered upstream regulation of PDE2A activity in the brain of VPA-exposed rats at an early developmental age (p < 0.05). Pharmacological inhibition of PDE2A normalized the communicative (p < 0.01, p < 0.05), social (p < 0.001, p < 0.05), and cognitive impairment (p < 0.001) displayed by both Fmr1-Δexon 8 and VPA-exposed rats. Altogether, these data highlight a key role of PDE2A in brain development and point to PDE2A inhibition as a promising pharmacological approach for the deficits common to both FXS and ASD

    Detrimental effects of the 'bath salt' methylenedioxypyrovalerone on social play behavior in male rats

    Get PDF
    Methylenedioxypyrovalerone (MDPV) is the most popular synthetic cathinone found in products marketed as 'bath salts', widely abused among teenagers and young adults. Synthetic cathinones have pharmacological effects resembling those of psychostimulants, which are known to disrupt a variety of social behaviors. However, despite the popular use of MDPV by young people in social contexts, information about its effects on social behavior is scarce. To investigate the impact of MDPV on social behavior at young age, and the underlying neurobehavioral mechanisms, we focused on social play behavior. Social play behavior is the most characteristic social behavior displayed by young mammals and it is crucial for neurobehavioral development. Treatment with MDPV reduced social play behavior in both juvenile and young adult male rats, and its play-suppressant effect was subject to tolerance but not sensitization. As the behavioral effects of MDPV have been ascribed to dopaminergic and noradrenergic neurotransmission, and given the role of these neurotransmitters in social play, we investigated the involvement of dopamine and noradrenaline in the play-suppressant effects of MDPV. The effects of MDPV on social play were blocked by either the α2 adrenoceptor antagonist RX821002 or the dopamine receptor antagonist flupenthixol, given alone or together at sub-effective doses. In sum, MDPV selectively suppresses the most vigorous social behavior of developing rats through both noradrenergic and dopaminergic mechanisms. This study provides important preclinical evidence of the deleterious effects of MDPV on social behavior, and as such increases our understanding of the neurobehavioral effects of this popular cathinone

    Involvement of Phosphodiesterase 2A Activity in the Pathophysiology of Fragile X Syndrome

    No full text
    International audienceThe fragile X mental retardation protein (FMRP) is an RNA-binding protein involved in translational regulation of mRNAs that play key roles in synaptic morphology and plasticity. The functional absence of FMRP causes the fragile X syndrome (FXS), the most common form of inherited intellectual disability and the most common monogenic cause of autism. No effective treatment is available for FXS. We recently identified the Phosphodiesterase 2A (Pde2a) mRNA as a prominent target of FMRP. PDE2A enzymatic activity is increased in the brain of Fmr1-KO mice, a recognized model of FXS, leading to decreased levels of cAMP and cGMP. Here, we pharmacologically inhibited PDE2A in Fmr1-KO mice and observed a rescue both of the maturity of dendritic spines and of the exaggerated hippocampal mGluR-dependent long-term depression. Remarkably, PDE2A blockade rescued the social and communicative deficits of both mouse and rat Fmr1-KO animals. Importantly, chronic inhibition of PDE2A in newborn Fmr1-KO mice followed by a washout interval, resulted in the rescue of the altered social behavior observed in adolescent mice. Altogether, these results reveal the key role of PDE2A in the physiopathology of FXS and suggest that its pharmacological inhibition represents a novel therapeutic approach for FXS
    corecore