16 research outputs found
Representing Knowledge About Words
Most on-line lexicons contain only semantic information. Semantic information is usually stored elsewhere, in a form consistent with representation of the syntactic information. This paper reports on research toward developing a large on-line lexicon from machine-readable dictionaries, which contains both syntactic and semantic information in uniform style. The fundamental theory is that of one of the relational lexicon; we describe relational lexicons, discuss our extensions to the usual theory of relational lexicons, rehearse very quickly some of the relations we are dealing with, and show how information for some simple entries is stored
Diffusion and viscosity in a supercooled polydisperse system
We have carried out extensive molecular dynamics simulations of a supercooled
polydisperse Lennard-Jones liquid with large variations in temperature at a
fixed pressure. The particles in the system are considered to be polydisperse
both in size and mass. The temperature dependence of the dynamical properties
such as the viscosity () and the self-diffusion coefficients () of
different size particles is studied. Both viscosity and diffusion coefficients
show super-Arrhenius temperature dependence and fit well to the well-known
Vogel-Fulcher-Tammann (VFT) equation. Within the temperature range
investigated, the value of the Angell's fragility parameter (D )
classifies the present system into a strongly fragile liquid. The critical
temperature for diffusion () increases with the size of the
particles. The critical temperature for viscosity () is larger than
that for the diffusion and a sizeable deviations appear for the smaller size
particles implying a decoupling of translational diffusion from viscosity in
deeply supercooled liquid. Indeed, the diffusion shows markedly non-Stokesian
behavior at low temperatures where a highly nonlinear dependence on size is
observed. An inspection of the trajectories of the particles shows that at low
temperatures the motions of both the smallest and largest size particles are
discontinuous (jump-type). However, the crossover from continuous Brownian to
large length hopping motion takes place at shorter time scales for the smaller
size particles.Comment: Revtex4, 7 pages, 8 figure