242 research outputs found
Phase Diagram of Lattice-Spin System RbCoBr
We study the lattice-spin model of RbCoBr which is proposed by Shirahata
and Nakamura, by mean field approximation. This model is an Ising spin system
on a distorted triangular lattice. There are two kinds of frustrated variables,
that is, the lattice and spin. We obtain a phase diagram of which phase
boundary is drawn continuously in a whole region. Intermediate phases that
include a partial disordered state appear. The model has the first-order phase
transitions in addition to the second-order phase transitions. We find a
three-sublattice ferrimagnetic state in the phase diagram. The three-sublattice
ferrimagnetic state does not appear when the lattice is not distorted.Comment: 5 pages, 4 figures, jpsj2.cls, to be published in J. Phys. Soc. Jpn.
Vol.75 (2006) No.
Partial Disorder and Metal-Insulator Transition in the Periodic Anderson Model on a Triangular Lattice
Ground state of the periodic Anderson model on a triangular lattice is
systematically investigated by the mean-field approximation. We found that the
model exhibits two different types of partially disordered states: one is at
half filling and the other is at other commensurate fillings. In the latter
case, the kinetic energy is lowered by forming an extensive network involving
both magnetic and nonmagnetic sites, in sharp contrast to the former case in
which the nonmagnetic sites are rather isolated. This spatially extended nature
of nonmagnetic sites yields a metallic partially-disordered state by hole
doping. We discuss the mechanism of the metal-insulator transition by the
change of electronic structure.Comment: 4 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp
Spin dynamics of a one-dimensional spin-1/2 fully anisotropic Ising-like antiferromagnet in a transverse magnetic field
We consider the one-dimensional Ising-like fully anisotropic S=1/2 Heisenberg
antiferromagnetic Hamiltonian and study the dynamics of domain wall excitations
in the presence of transverse magnetic field . We obtain dynamical spin
correlation functions along the magnetic field and
perpendicular to it . It is shown that the line shapes of
and are purely symmetric at the
zone-boundary. It is observed in for that the
spectral weight moves toward low energy side with the increase of . This
model is applicable to study the spin dynamics of CsCoCl in the presence of
weak interchain interactions.Comment: 19 pages, LaTeX, 12 eps figure
Variational Monte Carlo Study of the Kondo Necklace Model with Geometrical Frustration
We investigate the ground state of the Kondo necklace model on
geometrically-frustrated lattices by the variational Monte Carlo simulation. To
explore the possibility of a partially-ordered phase, we employ an extension of
the Yosida-type wave function as a variational state, which can describe a
coexistence of spin-singlet formation due to the Kondo coupling and magnetic
ordering by the Ruderman-Kittel-Kasuya-Yosida interaction. We show the
benchmark of the numerical simulation to demonstrate the high precision brought
by the optimization of a large number of variational parameters. We discuss the
ground-state phase diagram for the model on the kagome lattice in comparison
with that for the triangular-lattice case.Comment: 3 pages, proceedings for ICHE201
Two dimensionality in quasi one-dimensional cobalt oxides
By means of muon spin rotation and relaxation (SR) techniques, we have
investigated the magnetism of quasi one-dimensional (1D) cobalt oxides
CoO (=Ca, Sr and Ba, =1, 2, 3, 5 and
), in which the 1D CoO chain is surrounded by six equally spaced
chains forming a triangular lattice in the -plane, using polycrystalline
samples, from room temperature down to 1.8 K. For the compounds with =1 - 5,
transverse field SR experiments showed the existence of a magnetic
transition below 100 K. The onset temperature of the transition () was found to decrease with ; from 100 K for =1 to 60 K for
=5. A damped muon spin oscillation was observed only in the sample with
=1 (CaCoO), whereas only a fast relaxation obtained even at 1.8
K in the other three samples. In combination with the results of susceptibility
measurements, this indicates that a two-dimensional short-range
antiferromagnetic (AF) order appears below for all
compounds with =1 - 5; but quasi-static long-range AF order formed only in
CaCoO, below 25 K. For BaCoO (=), as decreased
from 300 K, 1D ferromagnetic (F) order appeared below 53 K, and a sharp 2D AF
transition occurred at 15 K.Comment: 12 pages, 14 figures, and 2 table
Generarized Cubic Model for BaTiO-like Ferroelectric Substance
We propose an order-disorder type microscopic model for BaTiO-like
Ferroelectric Substance. Our model has three phase transitions and four phases.
The symmetry and directions of the polarizations of the ordered phases agree
with the experimental results of BaTiO. The intermediate phases in our
model are known as an incompletely ordered phase, which appears in a
generalized clock model.Comment: 6 pages, 4figure
Thermally-induced magnetic phases in an Ising spin Kondo lattice model on a kagome lattice at 1/3-filling
Numerical investigation on the thermodynamic properties of an Ising spin
Kondo lattice model on a kagome lattice is reported. By using Monte Carlo
simulation, we investigated the magnetic phases at 1/3-filling. We identified
two successive transitions from high-temperature paramagnetic state to a
Kosterlitz-Thouless-like phase in an intermediate temperature range and to a
partially disordered phase at a lower temperature. The partially disordered
state is characterized by coexistence of antiferromagnetic hexagons and
paramagnetic sites with period . We compare the results
with those for the triangular lattice case.Comment: 4 pages, 2 figure
Anomalous magnetic phase in an undistorted pyrochlore oxide Cd2Os2O7 induced by geometrical frustration
We report on the muon spin rotation/relaxation study of a pyrochlore oxide,
Cd2Os2O7, which exhibits a metal-insulator (MI) transition at T_{MI}~225 K
without structural phase transition. It reveals strong spin fluctuation
(>10^8/s) below the MI transition, suggesting a predominant role of geometrical
spin frustration amongst Os^{5+} ions. Meanwhile, upon further cooling, a
static spin density wave discontinuously develops below T_{SDW}~150 K. These
observations strongly suggest the occurrence of an anomalous magnetic
transition and associated change in the local spin dynamics in undistorted
pyrochlore antiferromagnet.Comment: 5 pages, 4 figure
Specific heat and magnetization study on single crystals of a frustrated, quasi one-dimensional oxide: Ca3Co2O6
Specific heat and magnetization measurements have been carried out under a
range of magnetic fields on single crystals of Ca3Co2O6. This compound is
composed of Ising magnetic chains that are arranged on a triangular lattice.
The intrachain and interchain couplings are ferromagnetic and
antiferromagnetic, respectively. This situation gives rise to geometrical
frustration, that bears some similarity to the classical problem of a
two-dimensional Ising triangular antiferromagnet. This paper reports on the
ordering process at low-T and the possibility of one-dimensional features at
high-T.Comment: 7 pages, 6 figures, accepted for publication in PR
- …