9 research outputs found
Function and Cryo-EM structures of broadly potent bispecific antibodies against multiple SARS-CoV-2 Omicron sublineages
The SARS-CoV-2 variant, Omicron (B.1.1.529), rapidly swept the world since its emergence. Compared with previous variants, Omicron has a high number of mutations, especially those in its spike glycoprotein that drastically dampen or abolish the efficacy of currently available vaccines and therapeutic antibodies. Several major sublineages of Omicron involved, including BA.1, BA.2, BA.2.12.1, BA.3 and BA.4/BA.5, rapidly changing the global and regional landscape of the pandemic. Although vaccines are available, therapeutic antibodies remain critical for infected and especially hospitalized patients. To address this, we have designed and generated a panel of human/humanized therapeutic bispecific antibodies against Omicron and its sub-lineage variants, with activity spectrum against other lineages. Among these, the top clone CoV2–0213 has broadly potent activities against multiple SARS-CoV-2 ancestral and Omicron lineages, including BA.1, BA.1.1, BA.2, BA.2.12.1, BA.3 and BA.4/BA.5. We have solved the cryo-EM structure of the lead bi-specific antibody CoV-0213 and its major Fab arm MB.02. Three-dimensional structural analysis shows distinct epitope of antibody – spike receptor binding domain (RBD) interactions, and demonstrates that both Fab fragments of the same molecule of CoV2–0213 can target the same spike trimer simultaneously, further corroborating its mechanism of action. CoV2–0213 represents a unique and potent broad-spectrum SARS-CoV-2 neutralizing bispecific antibody (nbsAb) against the currently circulating major Omicron variants (BA.1, BA.1.1, BA.2, BA.2.12.1, BA.3 and BA.4/BA.5), while maintaining activity against certain ancestral lineages (WT/WA-1, Delta), and to some degree other β-coronavirus species (SARS-CoV). CoV2–0213 is primarily human and ready for translational testing as a countermeasure against the ever-evolving pathogen
Dynamic regulation of alternative polyadenylation by PQBP1 during neurogenesis
Summary: Alternative polyadenylation (APA) is a critical post-transcriptional process that generates mRNA isoforms with distinct 3′ untranslated regions (3′ UTRs), thereby regulating mRNA localization, stability, and translational efficiency. Cell-type-specific APA extensively shapes the diversity of the cellular transcriptome, particularly during cell fate transition. Despite its recognized significance, the precise regulatory mechanisms governing cell-type-specific APA remain unclear. In this study, we uncover PQBP1 as an emerging APA regulator that actively maintains cell-specific APA profiles in neural progenitor cells (NPCs) and delicately manages the equilibrium between NPC proliferation and differentiation. Multi-omics analysis shows that PQBP1 directly interacts with the upstream UGUA elements, impeding the recruitment of the CFIm complex and influencing polyadenylation site selection within genes associated with the cell cycle. Our findings elucidate the molecular mechanism by which PQBP1 orchestrates dynamic APA changes during neurogenesis, providing valuable insights into the precise regulation of cell-type-specific APA and the underlying pathogenic mechanisms in neurodevelopmental disorders
Clinical analysis and artificial intelligence survival prediction of serous ovarian cancer based on preoperative circulating leukocytes
Abstract Circulating leukocytes are an important part of the immune system. The aim of this work is to explore the role of preoperative circulating leukocytes in serous ovarian carcinoma and investigate whether they can be used to predict survival prognosis. Routine blood test results and clinical information of patients with serous ovarian carcinoma were retrospectively collected. And to predict survival according to the blood routine test result the decision tree method was applied to build a machine learning model. The results showed that the number of preoperative white blood cells (p = 0.022), monocytes (p < 0.001), lymphocytes (p < 0.001), neutrophils (p < 0.001), and eosinophils (p < 0.001) and the monocyte to lymphocyte (MO/LY) ratio in the serous ovarian cancer group were significantly different from those in the control group. These factors also showed a correlation with other clinicopathological characteristics. The MO/LY was the root node of the decision tree, and the predictive AUC for survival was 0.69. The features involved in the decision tree were the MO/LY, differentiation status, CA125 level, neutrophils (NE,) ascites cytology, LY% and age. In conclusion, the number and percentage of preoperative leukocytes in patients with ovarian cancer is changed significantly compared to those in the normal control group, as well as the MO/LY. A decision tree was built to predict the survival of patients with serous ovarian cancer based on the CA125 level, white blood cell (WBC) count, presence of lymph node metastasis (LNM), MO count, the MO/LY ratio, differentiation status, stage, LY%, ascites cytology, and age
Virulence and antifungal susceptibility of microsatellite genotypes of Candida albicans from superficial and deep locations
A set of 185 strains of Candida albicans from patients with vulvovaginal candidiasis (VVC) and from non-VVC clinical sources in southwest China was analysed. Strains were subjected to genotyping using CAI microsatellite typing and amplification of an intron-containing region of the 25S rRNA gene. Microsatellite genotypes of strains from non-VVC sources showed high polymorphism, whereas those of VVC were dominated by few, closely similar genotypes. However, among non-VVC strains, two genotypes were particularly prevalent in patients with lung cancer. 25S rDNA genotype A was dominant in VVC sources (86.7%), whereas genotypes A, B, and C were rather evenly distributed among non-VVC sources; known genotypes D and E were not found. In an experimental mouse model, isolates from lung cancer and AIDS patients proved to have higher virulence than VVC strains. Among 156 mice infected with C. albicans, 19 developed non-invasive urothelial carcinoma. No correlation could be established between parameters of virulence, source of infection, and incidence of carcinoma. C. albicans strains from VVC were less susceptible to itraconazole than the strains from non-VVC sources, whereas there was small difference in antifungal susceptibility between different 25S rDNA genotypes of C. albicans tested against amphotericin B, itraconazole, fluconazole, and flucytosine