18 research outputs found

    Information Bottleneck-Inspired Type Based Multiple Access for Remote Estimation in IoT Systems

    Get PDF
    Type-based multiple access (TBMA) is a semantics-aware multiple access protocol for remote inference. In TBMA, codewords are reused across transmitting sensors, with each codeword being assigned to a different observation value. Existing TBMA protocols are based on fixed shared codebooks and on conventional maximum-likelihood or Bayesian decoders, which require knowledge of the distributions of observations and channels. In this letter, we propose a novel design principle for TBMA based on the information bottleneck (IB). In the proposed IB-TBMA protocol, the shared codebook is jointly optimized with a decoder based on artificial neural networks (ANNs), so as to adapt to source, observations, and channel statistics based on data only. We also introduce the Compressed IB-TBMA (CIB-TBMA) protocol, which improves IB-TBMA by enabling a reduction in the number of codewords via an IB-inspired clustering phase. Numerical results demonstrate the importance of a joint design of codebook and neural decoder, and validate the benefits of codebook compression.Comment: 5 pages, 3 figures, accepted by IEEE Signal Processing Letters (SPL

    A multifactorial analysis of FAP to regulate gastrointestinal cancers progression

    Get PDF
    BackgroundFibroblast activation protein (FAP) is a cell-surface serine protease that has both dipeptidyl peptidase as well as endopeptidase activities and could cleave substrates at post-proline bond. Previous findings showed that FAP was hard to be detected in normal tissues but significantly up-regulated in remodeling sites like fibrosis, atherosclerosis, arthritis and embryonic tissues. Though increasing evidence has demonstrated the importance of FAP in cancer progression, no multifactorial analysis has been developed to investigate its function in gastrointestinal cancers until now.MethodsBy comprehensive use of datasets from The Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis Consortium (CPTAC), scTIME Portal and Human Protein Atlas (HPA), we evaluated the carcinogenesis potential of FAP in gastrointestinal cancers, analyzing the correlation between FAP and poor outcomes, immunology in liver, colon, pancreas as well as stomach cancers. Then liver cancer was selected as example to experimentally validate the pro-tumor and immune regulative role of FAP in gastrointestinal cancers.ResultsFAP was abundantly expressed in gastrointestinal cancers, such as LIHC, COAD, PAAD and STAD. Functional analysis indicated that the highly-expressed FAP in these cancers could affect extracellular matrix organization process and interacted with genes like COL1A1, COL1A2, COL3A1 and POSTN. In addition, it was also observed that FAP was positively correlated to M2 macrophages infiltration across these cancers. To verify these findings in vitro, we used LIHC as example and over-expressed FAP in human hepatic stellate LX2 cells, a main cell type that produce FAP in tumor tissues, and then investigate its role on LIHC cells as well as macrophages. Results showed that the medium from FAP-over-expressed LX2 cells could significantly promote the motility of MHCC97H and SK-Hep1 LIHC cells, increase the invasion of THP-1 macrophages and induce them into pro-tumor M2 phenotype.ConclusionIn summary, we employed bioinformatic tools and experiments to perform a comprehensive analysis about FAP. Up-regulation of FAP in gastrointestinal cancers was primarily expressed in fibroblasts and contributes to tumor cells motility, macrophages infiltration and M2 polarization, revealing the multifactorial role of FAP in gastrointestinal cancers progression

    Discussion on the countermeasure of improving the development effect of oil well dynamic analysis

    No full text
    With the rapid development of society and economy, higher requirements are put forward for oil and gas exploitation. Therefore, effective measures to improve the development effect should be analyzed with oil and gas well dynamic analysis as the entry point. This paper first introduces the definition of oil and gas well dynamic analysis, then introduces the well dynamic analysis and measures to improve the exploitation effect, then introduces the injection well dynamic analysis, and finally explores through the analysis and study of each production link of oil and water Wells, analyzes and determines the actual situation of underground advantage. The aim is to find out the law of oil and water movement between each reservoir, and take corresponding adjustment measures constantly to ensure a higher recovery rate of oil and gas Wells

    One-Step Synthesis of Nitrogen-Doped Porous Biochar Based on N-Doping Co-Activation Method and Its Application in Water Pollutants Control

    No full text
    In this work, birch bark (BB) was used for the first time to prepare porous biochars via different one-step methods including direct activation (BBB) and N-doping co-activation (N-BBB). The specific surface area and total pore volume of BBB and N-BBB were 2502.3 and 2292.7 m2/g, and 1.1389 and 1.0356 cm3/g, respectively. When removing synthetic methyl orange (MO) dye and heavy metal Cr6+, both BBB and N-BBB showed excellent treatment ability. The maximum adsorption capacities of BBB and N-BBB were 836.9 and 858.3 mg/g for MO, and 141.1 and 169.1 mg/g for Cr6+, respectively, which were higher than most previously reported biochar adsorbents. The probable adsorption mechanisms, including pore filling, π–π interaction, H-bond interaction, and electrostatic attraction, supported the biochars’ demonstrated high performance. In addition, after five recycles, the removal rates remained above 80%, which showed the high stability of the biochars. This work verified the feasibility of the one-step N-doping co-activation method to prepare high-performance biochars, and two kinds of biochars with excellent performance (BBB and N-BBB) were prepared. More importantly, this method provides new directions and ideas for the development and utilization of other biomasses

    Contribution of Spring Snowmelt Water to Soil Water in Northeast China and Its Dynamic Changes

    No full text
    Snowmelt water in spring is an important source of soil water, which is critical to supporting crop growth. Quantifying the contribution of snowmelt water to soil water and its dynamic changes is essential for evaluating soil moisture and allocating agricultural water resources. In this paper, through controlled outdoor experiments, different snow depths and soil depth gradients were set; and snow, precipitation, and soil samples were collected regularly. To analyze the contribution of snowmelt water to soil water and its dynamic changes, the MAT-253 stable isotope ratio mass spectrometer was adopted for hydrogen and oxygen isotope analyses. The results showed that the snowmelt water for snow depths of 10 cm, 30 cm, and 50 cm all contributed to the 0–30 cm soil layer. The contribution increased with soil depth, contributing 8.13%, 8.55%, and 11.24%, respectively. The contribution of the snow cover at the same depth to the soil moisture at different depths also varied, i.e., the contribution increased with increasing soil depth. The snowmelt water retention time at depths of 10 cm, 30 cm, and 50 cm was inconsistent, i.e., it was the longest at 0–10 cm (average of 69 days), followed by 20–30 cm (average of 59 days), and the shortest at 10–20 cm (average of 54 days). The greater the snow depth, the shorter the retention time of the snowmelt water in the different soil layers. For surface soil, the contribution of the snowmelt water at greater depths was significantly different; while for deep soil, the contribution was more sensitive to the snow depth. Regardless of snow depth, soil contributions at different depths were significantly different. Precipitation also affected the contribution of the snowmelt water to the soil water, exhibiting different effects at different depths

    Contribution of Spring Snowmelt Water to Soil Water in Northeast China and Its Dynamic Changes

    No full text
    Snowmelt water in spring is an important source of soil water, which is critical to supporting crop growth. Quantifying the contribution of snowmelt water to soil water and its dynamic changes is essential for evaluating soil moisture and allocating agricultural water resources. In this paper, through controlled outdoor experiments, different snow depths and soil depth gradients were set; and snow, precipitation, and soil samples were collected regularly. To analyze the contribution of snowmelt water to soil water and its dynamic changes, the MAT-253 stable isotope ratio mass spectrometer was adopted for hydrogen and oxygen isotope analyses. The results showed that the snowmelt water for snow depths of 10 cm, 30 cm, and 50 cm all contributed to the 0–30 cm soil layer. The contribution increased with soil depth, contributing 8.13%, 8.55%, and 11.24%, respectively. The contribution of the snow cover at the same depth to the soil moisture at different depths also varied, i.e., the contribution increased with increasing soil depth. The snowmelt water retention time at depths of 10 cm, 30 cm, and 50 cm was inconsistent, i.e., it was the longest at 0–10 cm (average of 69 days), followed by 20–30 cm (average of 59 days), and the shortest at 10–20 cm (average of 54 days). The greater the snow depth, the shorter the retention time of the snowmelt water in the different soil layers. For surface soil, the contribution of the snowmelt water at greater depths was significantly different; while for deep soil, the contribution was more sensitive to the snow depth. Regardless of snow depth, soil contributions at different depths were significantly different. Precipitation also affected the contribution of the snowmelt water to the soil water, exhibiting different effects at different depths

    Peanut Drought Risk Zoning in Shandong Province, China

    No full text
    Peanut growth in Shandong Province, a major peanut-producing area in China, is greatly affected by drought. The present study uses hierarchical analysis, weighted comprehensive evaluation, and ArcGIS spatial analysis to conduct spatial zoning of peanut drought risk in Shandong Province based on daily precipitation data for the province acquired from 1991 to 2020, the per capita GDP, and the peanut planting area of Shandong Province, so as to quantify the disaster risk of peanut drought and formulate disaster prevention and resilience planning accordingly. The results show the high-drought-risk zone was mainly distributed in the northwestern part of Shandong Province and on the Jiaodong Peninsula, covering 32.4% of the province. Drought risk was concentrated on the Jiaodong Peninsula, covering 20.7% of the province. The high-vulnerability zone was mainly distributed in the cities of Yantai, Weihai, Linyi, and Rizhao, accounting for 26.8% of the total area. The low-disaster-prevention and low-mitigation-capacity zone was mainly distributed in the western part of Shandong Province, covering 38.7% of the province. Medium- and high-risk areas for drought affecting peanuts were widely distributed, while the overall comprehensive risk index was high, covering 76.2% of the province. Spatial analysis to conduct risk zoning and assessment of peanut drought in Shandong Province, so as to provide a basis for peanut drought disaster prevention and safe peanut production in Shandong Province

    Peanut Drought Risk Zoning in Shandong Province, China

    No full text
    Peanut growth in Shandong Province, a major peanut-producing area in China, is greatly affected by drought. The present study uses hierarchical analysis, weighted comprehensive evaluation, and ArcGIS spatial analysis to conduct spatial zoning of peanut drought risk in Shandong Province based on daily precipitation data for the province acquired from 1991 to 2020, the per capita GDP, and the peanut planting area of Shandong Province, so as to quantify the disaster risk of peanut drought and formulate disaster prevention and resilience planning accordingly. The results show the high-drought-risk zone was mainly distributed in the northwestern part of Shandong Province and on the Jiaodong Peninsula, covering 32.4% of the province. Drought risk was concentrated on the Jiaodong Peninsula, covering 20.7% of the province. The high-vulnerability zone was mainly distributed in the cities of Yantai, Weihai, Linyi, and Rizhao, accounting for 26.8% of the total area. The low-disaster-prevention and low-mitigation-capacity zone was mainly distributed in the western part of Shandong Province, covering 38.7% of the province. Medium- and high-risk areas for drought affecting peanuts were widely distributed, while the overall comprehensive risk index was high, covering 76.2% of the province. Spatial analysis to conduct risk zoning and assessment of peanut drought in Shandong Province, so as to provide a basis for peanut drought disaster prevention and safe peanut production in Shandong Province

    Ultrasound-guided internal branch of superior laryngeal nerve block on postoperative sore throat: A randomized controlled trial.

    No full text
    IntroductionUltrasound-guided internal branch of the upper laryngeal nerve block (USG-guided iSLN block) have been used to decrease the perioperative stress response of intubation. It is more likely to be successful than blindly administered superior laryngeal nerve blocks with fewer complications. Here, we evaluated the efficacy of USG-guided iSLN block to treat postoperative sore throat (postoperative sore throat, POST) after extubation.Methods100 patients, aged from 18 to 60 years old, ASA I~II who underwent general anesthesia and suffered from the moderate to severe postoperative sore throat after extubation were randomized into two groups(50 cases per group). Patients in group S received USG-guided iSLN block bilaterally (60mg of 2% lidocaine, 1.5ml each side), whereas those in group I received inhalation with 100 mg of 2% lidocaine and 1mg of budesonide suspension diluted with normal saline (oxygen flow 8 L /min, inhalation for 15 minutes). The primary outcome were VAS scores in both groups before treatment (T0), 10 min (T1), 30 min(T2), 1h(T3), 2 h(T4), 4h(T5), 8h(T6), 24h(T7), and 48h(T8) after treatment. The secondary outcome were satisfaction scores after treatment, MAP, HR, and SPO2 fromT0 to T8. The adverse reactions such as postoperative chocking or aspiration, cough, hoarseness, dyspnea were also observed in both groups.ResultsPatients in group S had significantly lower VAS score than that in group I at points of T1 ~ T6 (P ConclusionCompared with inhalation, USG-guided iSLN block may effectively relieve the postoperative sore throat after extubation under general anesthesia and provided an ideal treatment for POST in clinical work

    Design and Implementation of an Efficient Hardware Coprocessor IP Core for Multi-axis Servo Control Based on Universal SoC

    No full text
    The multi-axis servo control system has been extensively used in industrial control. However, the applications of traditional MCU and DSP chips in high-performance multi-axis servo control systems are becoming increasingly difficult due to their lack of computing power. Although FPGA chips can meet the computing power requirements of high-performance multi-axis servo control systems, their versatility is insufficient, and the chip is too costly for large-scale use. Therefore, when designing the universal SoC, it is better to directly embed the coprocessor IP core dedicated to accelerating the multi-motor vector control current loop operation into the universal SoC. In this study, a coprocessor IP core that can be flexibly embedded in a universal SoC was designed. The IP core based on time division multiplexing (TDM) technology could accelerate the multi-motor vector control current loop operation according to the hardware–software coordination scheme proposed in this study. The IP was first integrated into a universal SoC to verify its performance, and then the FPGA prototype verification for the SoC was performed under three-axis servo control systems. Secondly, the ASIC implementation of the IP was also conducted based on the CSMC 90 nm process library. The experimental results revealed that the IP had a small area and low power consumption and was suitable for application in universal SoC. Therefore, the cheap and low-power single universal SoC with the coprocessor IP can be suitable for multi-axis servo control
    corecore