480 research outputs found

    If beam search is the answer, what was the question?

    Full text link
    Quite surprisingly, exact maximum a posteriori (MAP) decoding of neural language generators frequently leads to low-quality results. Rather, most state-of-the-art results on language generation tasks are attained using beam search despite its overwhelmingly high search error rate. This implies that the MAP objective alone does not express the properties we desire in text, which merits the question: if beam search is the answer, what was the question? We frame beam search as the exact solution to a different decoding objective in order to gain insights into why high probability under a model alone may not indicate adequacy. We find that beam search enforces uniform information density in text, a property motivated by cognitive science. We suggest a set of decoding objectives that explicitly enforce this property and find that exact decoding with these objectives alleviates the problems encountered when decoding poorly calibrated language generation models. Additionally, we analyze the text produced using various decoding strategies and see that, in our neural machine translation experiments, the extent to which this property is adhered to strongly correlates with BLEU.Comment: EMNLP 202

    On the Usefulness of Embeddings, Clusters and Strings for Text Generator Evaluation

    Full text link
    A good automatic evaluation metric for language generation ideally correlates highly with human judgements of text quality. Yet, there is a dearth of such metrics, which inhibits the rapid and efficient progress of language generators. One exception is the recently proposed Mauve. In theory, Mauve measures an information-theoretic divergence between two probability distributions over strings: one representing the language generator under evaluation; the other representing the true natural language distribution. Mauve's authors argue that its success comes from the qualitative properties of their proposed divergence. Yet in practice, as this divergence is uncomputable, Mauve approximates it by measuring the divergence between multinomial distributions over clusters instead, where cluster assignments are attained by grouping strings based on a pre-trained language model's embeddings. As we show, however, this is not a tight approximation -- in either theory or practice. This begs the question: why does Mauve work so well? In this work, we show that Mauve was right for the wrong reasons, and that its newly proposed divergence is not necessary for its high performance. In fact, classical divergences paired with its proposed cluster-based approximation may actually serve as better evaluation metrics. We finish the paper with a probing analysis; this analysis leads us to conclude that -- by encoding syntactic- and coherence-level features of text, while ignoring surface-level features -- such cluster-based substitutes to string distributions may simply be better for evaluating state-of-the-art language generators.Comment: Tiago Pimentel and Clara Meister contributed equally to this wor

    Determinantal Beam Search

    Full text link
    Beam search is a go-to strategy for decoding neural sequence models. The algorithm can naturally be viewed as a subset optimization problem, albeit one where the corresponding set function does not reflect interactions between candidates. Empirically, this leads to sets often exhibiting high overlap, e.g., strings may differ by only a single word. Yet in use-cases that call for multiple solutions, a diverse or representative set is often desired. To address this issue, we propose a reformulation of beam search, which we call determinantal beam search. Determinantal beam search has a natural relationship to determinantal point processes (DPPs), models over sets that inherently encode intra-set interactions. By posing iterations in beam search as a series of subdeterminant maximization problems, we can turn the algorithm into a diverse subset selection process. In a case study, we use the string subsequence kernel to explicitly encourage n-gram coverage in text generated from a sequence model. We observe that our algorithm offers competitive performance against other diverse set generation strategies in the context of language generation, while providing a more general approach to optimizing for diversity

    Estimating the Entropy of Linguistic Distributions

    Full text link
    Shannon entropy is often a quantity of interest to linguists studying the communicative capacity of human language. However, entropy must typically be estimated from observed data because researchers do not have access to the underlying probability distribution that gives rise to these data. While entropy estimation is a well-studied problem in other fields, there is not yet a comprehensive exploration of the efficacy of entropy estimators for use with linguistic data. In this work, we fill this void, studying the empirical effectiveness of different entropy estimators for linguistic distributions. In a replication of two recent information-theoretic linguistic studies, we find evidence that the reported effect size is over-estimated due to over-reliance on poor entropy estimators. Finally, we end our paper with concrete recommendations for entropy estimation depending on distribution type and data availability.Comment: 21 pages (5 pages main text). 4 figures. Accepted to ACL 202

    On the Effect of Anticipation on Reading Times

    Full text link
    Over the past two decades, numerous studies have demonstrated how less predictable (i.e., higher surprisal) words take more time to read. In general, these studies have implicitly assumed the reading process is purely responsive: Readers observe a new word and allocate time to process it as required. We argue that prior results are also compatible with a reading process that is at least partially anticipatory: Readers could make predictions about a future word and allocate time to process it based on their expectation. In this work, we operationalize this anticipation as a word's contextual entropy. We assess the effect of anticipation on reading by comparing how well surprisal and contextual entropy predict reading times on four naturalistic reading datasets: two self-paced and two eye-tracking. Experimentally, across datasets and analyses, we find substantial evidence for effects of contextual entropy over surprisal on a word's reading time (RT): in fact, entropy is sometimes better than surprisal in predicting a word's RT. Spillover effects, however, are generally not captured by entropy, but only by surprisal. Further, we hypothesize four cognitive mechanisms through which contextual entropy could impact RTs -- three of which we are able to design experiments to analyze. Overall, our results support a view of reading that is not just responsive, but also anticipatory.Comment: This is a pre-MIT Press publication version of the paper. Code is available in https://github.com/rycolab/anticipation-on-reading-time

    Revisiting the Optimality of Word Lengths

    Full text link
    Zipf (1935) posited that wordforms are optimized to minimize utterances' communicative costs. Under the assumption that cost is given by an utterance's length, he supported this claim by showing that words' lengths are inversely correlated with their frequencies. Communicative cost, however, can be operationalized in different ways. Piantadosi et al. (2011) claim that cost should be measured as the distance between an utterance's information rate and channel capacity, which we dub the channel capacity hypothesis (CCH) here. Following this logic, they then proposed that a word's length should be proportional to the expected value of its surprisal (negative log-probability in context). In this work, we show that Piantadosi et al.'s derivation does not minimize CCH's cost, but rather a lower bound, which we term CCH-lower. We propose a novel derivation, suggesting an improved way to minimize CCH's cost. Under this method, we find that a language's word lengths should instead be proportional to the surprisal's expectation plus its variance-to-mean ratio. Experimentally, we compare these three communicative cost functions: Zipf's, CCH-lower , and CCH. Across 13 languages and several experimental settings, we find that length is better predicted by frequency than either of the other hypotheses. In fact, when surprisal's expectation, or expectation plus variance-to-mean ratio, is estimated using better language models, it leads to worse word length predictions. We take these results as evidence that Zipf's longstanding hypothesis holds.Comment: Published at EMNLP 202

    A Natural Bias for Language Generation Models

    Full text link
    After just a few hundred training updates, a standard probabilistic model for language generation has likely not yet learnt many semantic or syntactic rules of natural language, making it difficult to estimate the probability distribution over next tokens. Yet around this point, these models have identified a simple, loss-minimising behaviour: to output the unigram distribution of the target training corpus. The use of such a heuristic raises the question: Can we initialise our models with this behaviour and save precious compute resources and model capacity? Here we show that we can effectively endow standard neural language generation models with a separate module that reflects unigram frequency statistics as prior knowledge, simply by initialising the bias term in a model's final linear layer with the log-unigram distribution. We use neural machine translation as a test bed for this simple technique and observe that it: (i) improves learning efficiency; (ii) achieves better overall performance; and perhaps most importantly (iii) appears to disentangle strong frequency effects by encouraging the model to specialise in non-frequency-related aspects of language.Comment: Main conference paper at ACL 202

    Testing the Predictions of Surprisal Theory in 11 Languages

    Full text link
    A fundamental result in psycholinguistics is that less predictable words take a longer time to process. One theoretical explanation for this finding is Surprisal Theory (Hale, 2001; Levy, 2008), which quantifies a word's predictability as its surprisal, i.e. its negative log-probability given a context. While evidence supporting the predictions of Surprisal Theory have been replicated widely, most have focused on a very narrow slice of data: native English speakers reading English texts. Indeed, no comprehensive multilingual analysis exists. We address this gap in the current literature by investigating the relationship between surprisal and reading times in eleven different languages, distributed across five language families. Deriving estimates from language models trained on monolingual and multilingual corpora, we test three predictions associated with surprisal theory: (i) whether surprisal is predictive of reading times; (ii) whether expected surprisal, i.e. contextual entropy, is predictive of reading times; (iii) and whether the linking function between surprisal and reading times is linear. We find that all three predictions are borne out crosslinguistically. By focusing on a more diverse set of languages, we argue that these results offer the most robust link to-date between information theory and incremental language processing across languages.Comment: This is a pre-MIT Press publication version of the pape
    • …
    corecore